
Anymail Documentation
Release 2.1

Anymail contributors (see AUTHORS.txt)

Apr 11, 2018

Contents

1 Documentation 3
1.1 Anymail 1-2-3 . 3
1.2 Installation and configuration . 4
1.3 Sending email . 8
1.4 Receiving mail . 27
1.5 Supported ESPs . 33
1.6 Tips, tricks, and advanced usage . 70
1.7 Troubleshooting . 75
1.8 Contributing . 75
1.9 Release notes . 78

Python Module Index 79

i

ii

Anymail Documentation, Release 2.1

Version 2.1

Anymail integrates several transactional email service providers (ESPs) into Django, with a consistent API that lets
you use ESP-added features without locking your code to a particular ESP.

It currently fully supports Amazon SES, Mailgun, Mailjet, Postmark, SendinBlue, SendGrid, and SparkPost, and
has limited support for Mandrill.

Anymail normalizes ESP functionality so it “just works” with Django’s built-in django.core.mail package. It
includes:

• Support for HTML, attachments, extra headers, and other features of Django’s built-in email

• Extensions that make it easy to use extra ESP functionality, like tags, metadata, and tracking, with code that’s
portable between ESPs

• Simplified inline images for HTML email

• Normalized sent-message status and tracking notification, by connecting your ESP’s webhooks to Django sig-
nals

• “Batch transactional” sends using your ESP’s merge and template features

• Inbound message support, to receive email through your ESP’s webhooks, with simplified, portable access to
attachments and other inbound content

Anymail is released under the BSD license. It is extensively tested against Django 1.8–2.0 (including Python 2.7,
Python 3 and PyPy). Anymail releases follow semantic versioning.

Contents 1

https://docs.djangoproject.com/en/stable/topics/email/#module-django.core.mail
https://docs.djangoproject.com/en/stable/topics/email/
http://semver.org/

Anymail Documentation, Release 2.1

2 Contents

CHAPTER 1

Documentation

1.1 Anymail 1-2-3

Here’s how to send a message. This example uses Mailgun, but you can substitute Mailjet or Postmark or SendGrid
or SparkPost or any other supported ESP where you see “mailgun”:

1. Install Anymail from PyPI:

$ pip install django-anymail[mailgun]

(The [mailgun] part installs any additional packages needed for that ESP. Mailgun doesn’t have any, but
some other ESPs do.)

2. Edit your project’s settings.py:

INSTALLED_APPS = [
...
"anymail",
...

]

ANYMAIL = {
(exact settings here depend on your ESP...)
"MAILGUN_API_KEY": "<your Mailgun key>",
"MAILGUN_SENDER_DOMAIN": 'mg.example.com', # your Mailgun domain, if needed

}
EMAIL_BACKEND = "anymail.backends.mailgun.EmailBackend" # or sendgrid.
→˓EmailBackend, or...
DEFAULT_FROM_EMAIL = "you@example.com" # if you don't already have this in
→˓settings

3. Now the regular Django email functions will send through your chosen ESP:

from django.core.mail import send_mail

(continues on next page)

3

https://docs.djangoproject.com/en/stable/topics/email/

Anymail Documentation, Release 2.1

(continued from previous page)

send_mail("It works!", "This will get sent through Mailgun",
"Anymail Sender <from@example.com>", ["to@example.com"])

You could send an HTML message, complete with an inline image, custom tags and metadata:

from django.core.mail import EmailMultiAlternatives
from anymail.message import attach_inline_image_file

msg = EmailMultiAlternatives(
subject="Please activate your account",
body="Click to activate your account: http://example.com/activate",
from_email="Example <admin@example.com>",
to=["New User <user1@example.com>", "account.manager@example.com"],
reply_to=["Helpdesk <support@example.com>"])

Include an inline image in the html:
logo_cid = attach_inline_image_file(msg, "/path/to/logo.jpg")
html = """

<p>Please activate
your account</p>""".format(logo_cid=logo_cid)

msg.attach_alternative(html, "text/html")

Optional Anymail extensions:
msg.metadata = {"user_id": "8675309", "experiment_variation": 1}
msg.tags = ["activation", "onboarding"]
msg.track_clicks = True

Send it:
msg.send()

Problems? We have some Troubleshooting info that may help.

Now what?

Now that you’ve got Anymail working, you might be interested in:

• Sending email with Anymail

• Receiving inbound email

• ESP-specific information

• All the docs

1.2 Installation and configuration

1.2.1 Installing Anymail

To use Anymail in your Django project:

1. Install the django-anymail app. It’s easiest to install from PyPI using pip:

$ pip install django-anymail[sendgrid,sparkpost]

4 Chapter 1. Documentation

Anymail Documentation, Release 2.1

The [sendgrid,sparkpost] part of that command tells pip you also want to install additional packages
required for those ESPs. You can give one or more comma-separated, lowercase ESP names. (Most ESPs don’t
have additional requirements, so you can often just skip this. Or change your mind later. Anymail will let you
know if there are any missing dependencies when you try to use it.)

2. Edit your Django project’s settings.py, and add anymail to your INSTALLED_APPS (anywhere in the
list):

INSTALLED_APPS = [
...
"anymail",
...

]

3. Also in settings.py, add an ANYMAIL settings dict, substituting the appropriate settings for your ESP. E.g.:

ANYMAIL = {
"MAILGUN_API_KEY": "<your Mailgun key>",

}

The exact settings vary by ESP. See the supported ESPs section for specifics.

Then continue with either or both of the next two sections, depending on which Anymail features you want to use.

1.2.2 Configuring Django’s email backend

To use Anymail for sending email from Django, make additional changes in your project’s settings.py. (Skip
this section if you are only planning to receive email.)

1. Change your existing Django EMAIL_BACKEND to the Anymail backend for your ESP. For example, to send
using Mailgun by default:

EMAIL_BACKEND = "anymail.backends.mailgun.EmailBackend"

(EMAIL_BACKEND sets Django’s default for sending emails; you can also use multiple Anymail backends to
send particular messages through different ESPs.)

2. If you don’t already have a DEFAULT_FROM_EMAIL in your settings, this is a good time to add one. (Django’s
default is “webmaster@localhost”, which some ESPs will reject.)

With the settings above, you are ready to send outgoing email through your ESP. If you also want to enable status
tracking or inbound handling, continue with the settings below. Otherwise, skip ahead to Sending email.

1.2.3 Configuring tracking and inbound webhooks

Anymail can optionally connect to your ESP’s event webhooks to notify your app of:

• status tracking events for sent email, like bounced or rejected messages, successful delivery, message opens and
clicks, etc.

• inbound message events, if you are set up to receive email through your ESP

Skip this section if you won’t be using Anymail’s webhooks.

1.2. Installation and configuration 5

https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-INSTALLED_APPS
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_BACKEND
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_BACKEND
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-DEFAULT_FROM_EMAIL

Anymail Documentation, Release 2.1

Warning: Webhooks are ordinary urls, and are wide open to the internet. You must use care to avoid creating
security vulnerabilities that could expose your users’ emails and other private information, or subject your app to
malicious input data.

At a minimum, your site should use https and you should configure a webhook secret as described below.

See Securing webhooks for additional information.

If you want to use Anymail’s inbound or tracking webhooks:

1. In your settings.py, add WEBHOOK_SECRET to the ANYMAIL block:

ANYMAIL = {
...
'WEBHOOK_SECRET': '<a random string>:<another random string>',

}

This setting should be a string with two sequences of random characters, separated by a colon. It is used as a
shared secret, known only to your ESP and your Django app, to ensure nobody else can call your webhooks.

We suggest using 16 characters (or more) for each half of the secret. Always generate a new, random secret just
for this purpose. (Don’t use your Django secret key or ESP’s API key.)

An easy way to generate a random secret is to run this command in a shell:

$ python -c "from django.utils import crypto; print(':'.join(crypto.get_random_
→˓string(16) for _ in range(2)))"

(This setting is actually an HTTP basic auth string. You can also set it to a list of auth strings, to simplify cre-
dential rotation or use different auth with different ESPs. See ANYMAIL_WEBHOOK_SECRET in the Securing
webhooks docs for more details.)

2. In your project’s urls.py, add routing for the Anymail webhook urls:

from django.conf.urls import include, url

urlpatterns = [
...
url(r'^anymail/', include('anymail.urls')),

]

(You can change the “anymail” prefix in the first parameter to url() if you’d like the webhooks to be served
at some other URL. Just match whatever you use in the webhook URL you give your ESP in the next step.)

3. Enter the webhook URL(s) into your ESP’s dashboard or control panel. In most cases, the URL will be:

https://random:random@yoursite.example.com/anymail/esp/type/

• “https” (rather than http) is strongly recommended

• random:random is the WEBHOOK_SECRET string you created in step 1

• yoursite.example.com is your Django site

• “anymail” is the url prefix (from step 2)

• esp is the lowercase name of your ESP (e.g., “sendgrid” or “mailgun”)

• type is either “tracking” for Anymail’s sent-mail event tracking webhooks, or “inbound” for receiving
email

6 Chapter 1. Documentation

https://docs.djangoproject.com/en/stable/ref/urls/#django.conf.urls.url

Anymail Documentation, Release 2.1

Some ESPs support different webhooks for different tracking events. You can usually enter the same Anymail
tracking webhook URL for all of them (or all that you want to receive)—but be sure to use the separate inbound
URL for inbound webhooks. And always check the specific details for your ESP under Supported ESPs.

Also, some ESPs try to validate the webhook URL immediately when you enter it. If so, you’ll need to deploy
your Django project to your live server before you can complete this step.

Some WSGI servers may need additional settings to pass HTTP authorization headers through to Django. For example,
Apache with mod_wsgi requires WSGIPassAuthorization On, else Anymail will complain about “missing or
invalid basic auth” when your webhook is called.

See Tracking sent mail status for information on creating signal handlers and the status tracking events you can receive.
See Receiving mail for information on receiving inbound message events.

1.2.4 Anymail settings reference

You can add Anymail settings to your project’s settings.py either as a single ANYMAIL dict, or by breaking out
individual settings prefixed with ANYMAIL_. So this settings dict:

ANYMAIL = {
"MAILGUN_API_KEY": "12345",
"SEND_DEFAULTS": {

"tags": ["myapp"]
},

}

. . . is equivalent to these individual settings:

ANYMAIL_MAILGUN_API_KEY = "12345"
ANYMAIL_SEND_DEFAULTS = {"tags": ["myapp"]}

In addition, for some ESP settings like API keys, Anymail will look for a setting without the ANYMAIL_ prefix if it
can’t find the Anymail one. (This can be helpful if you are using other Django apps that work with the same ESP.)

MAILGUN_API_KEY = "12345" # used only if neither ANYMAIL["MAILGUN_API_KEY"]
nor ANYMAIL_MAILGUN_API_KEY have been set

Finally, for complex use cases, you can override most settings on a per-instance basis by providing keyword args
where the instance is initialized (e.g., in a get_connection() call to create an email backend instance, or in
View.as_view() call to set up webhooks in a custom urls.py). To get the kwargs parameter for a setting, drop
“ANYMAIL” and the ESP name, and lowercase the rest: e.g., you can override ANYMAIL_MAILGUN_API_KEY
by passing api_key="abc" to get_connection(). See Mixing email backends for an example.

There are specific Anymail settings for each ESP (like API keys and urls). See the supported ESPs section for details.
Here are the other settings Anymail supports:

IGNORE_RECIPIENT_STATUS

Set to True to disable AnymailRecipientsRefused exceptions on invalid or rejected recipients. (Default
False.) See Refused recipients.

ANYMAIL = {
...
"IGNORE_RECIPIENT_STATUS": True,

}

1.2. Installation and configuration 7

http://modwsgi.readthedocs.io/en/latest/configuration-directives/WSGIPassAuthorization.html
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.get_connection
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.get_connection
https://docs.python.org/3.6/library/constants.html#True
https://docs.python.org/3.6/library/constants.html#False

Anymail Documentation, Release 2.1

SEND_DEFAULTS and ESP_SEND_DEFAULTS‘

A dict of default options to apply to all messages sent through Anymail. See Global send defaults.

IGNORE_UNSUPPORTED_FEATURES

Whether Anymail should raise AnymailUnsupportedFeature errors for email with features that can’t be accu-
rately communicated to the ESP. Set to True to ignore these problems and send the email anyway. See Unsupported
features. (Default False.)

WEBHOOK_SECRET

A 'random:random' shared secret string. Anymail will reject incoming webhook calls from your ESP that don’t
include this authentication. You can also give a list of shared secret strings, and Anymail will allow ESP webhook
calls that match any of them (to facilitate credential rotation). See Securing webhooks.

Default is unset, which leaves your webhooks insecure. Anymail will warn if you try to use webhooks without a shared
secret.

This is actually implemented using HTTP basic authentication, and the string is technically a “username:password”
format. But you should not use any real username or password for this shared secret.

Changed in version 1.4: The earlier WEBHOOK_AUTHORIZATION setting was renamed WEBHOOK_SECRET,
so that Django error reporting sanitizes it. Support for the old name was dropped in Anymail 2.0, and if you have not
yet updated your settings.py, all webhook calls will fail with a “missing or invalid basic auth” error.

REQUESTS_TIMEOUT

New in version 1.3.

For Requests-based Anymail backends, the timeout value used for all API calls to your ESP. The default is 30 seconds.
You can set to a single float, a 2-tuple of floats for separate connection and read timeouts, or None to disable timeouts
(not recommended). See Timeouts in the Requests docs for more information.

1.3 Sending email

1.3.1 Django email support

Anymail builds on Django’s core email functionality. If you are already sending email using Django’s default SMTP
EmailBackend, switching to Anymail will be easy. Anymail is designed to “just work” with Django.

If you’re not familiar with Django’s email functions, please take a look at “sending email” in the Django docs
first.

Anymail supports most of the functionality of Django’s EmailMessage and EmailMultiAlternatives
classes.

Anymail handles all outgoing email sent through Django’s django.core.mail module, including
send_mail(), send_mass_mail(), the EmailMessage class, and even mail_admins(). If you’d like
to selectively send only some messages through Anymail, or you’d like to use different ESPs for particular messages,
there are ways to use multiple email backends.

8 Chapter 1. Documentation

https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/constants.html#True
https://docs.python.org/3.6/library/constants.html#False
https://docs.python.org/3.6/library/constants.html#None
http://docs.python-requests.org/en/latest/user/advanced/#timeouts
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.backends.smtp.EmailBackend
https://docs.djangoproject.com/en/stable/topics/email/#module-django.core.mail
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage
https://docs.djangoproject.com/en/stable/topics/email/#module-django.core.mail
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.send_mail
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.send_mass_mail
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.mail_admins

Anymail Documentation, Release 2.1

HTML email

To send an HTML message, you can simply use Django’s send_mail() function with the html_message pa-
rameter:

from django.core.mail import send_mail

send_mail("Subject", "text body", "from@example.com",
["to@example.com"], html_message="<html>html body</html>")

However, many Django email capabilities – and additional Anymail features – are only available when working with
an EmailMultiAlternatives object. Use its attach_alternative() method to send HTML:

from django.core.mail import EmailMultiAlternatives

msg = EmailMultiAlternatives("Subject", "text body",
"from@example.com", ["to@example.com"])

msg.attach_alternative("<html>html body</html>", "text/html")
you can set any other options on msg here, then...
msg.send()

It’s good practice to send equivalent content in your plain-text body and the html version.

Attachments

Anymail will send a message’s attachments to your ESP. You can add attachments with the attach() or
attach_file() methods of Django’s EmailMessage.

Note that some ESPs impose limits on the size and type of attachments they will send.

Inline images

If your message has any attachments with Content-Disposition: inline headers, Anymail will tell your
ESP to treat them as inline rather than ordinary attached files. If you want to reference an attachment from an
in your HTML source, the attachment also needs a Content-ID header.

Anymail comes with attach_inline_image() and attach_inline_image_file() convenience func-
tions that do the right thing. See Inline images in the “Anymail additions” section.

(If you prefer to do the work yourself, Python’s MIMEImage and add_header() should be helpful.)

Even if you mark an attachment as inline, some email clients may decide to also display it as an attachment. This is
largely outside your control.

Additional headers

Anymail passes additional headers to your ESP. (Some ESPs may limit which headers they’ll allow.) EmailMessage
expects a dict of headers:

Use `headers` when creating an EmailMessage
msg = EmailMessage(...

headers={
"List-Unsubscribe": unsubscribe_url,
"X-Example-Header": "myapp",

}

(continues on next page)

1.3. Sending email 9

https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.send_mail
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage
https://docs.python.org/3.6/library/email.mime.html#email.mime.image.MIMEImage
https://docs.python.org/3.6/library/email.compat32-message.html#email.message.Message.add_header
https://docs.python.org/3.6/library/stdtypes.html#dict

Anymail Documentation, Release 2.1

(continued from previous page)

)

Or use the `extra_headers` attribute later
msg.extra_headers["In-Reply-To"] = inbound_msg["Message-ID"]

Anymail treats header names as case-insensitive (because that’s how email handles them). If you supply multiple
headers that differ only in case, only one of them will make it into the resulting email.

Django’s default SMTP EmailBackend has special handling for certain headers. Anymail replicates its behavior
for compatibility:

• If you supply a “Reply-To” header, it will override the message’s reply_to attribute.

• If you supply a “From” header, it will override the message’s from_email and become the From field the re-
cipient sees. In addition, the original from_email value will be used as the message’s envelope_sender,
which becomes the Return-Path at the recipient end. (Only if your ESP supports altering envelope sender,
otherwise you’ll get an unsupported feature error.)

• If you supply a “To” header, you’ll usually get an unsupported feature error. With Django’s SMTP EmailBack-
end, this can be used to show the recipient a To address that’s different from the actual envelope recipients in
the message’s to list. Spoofing the To header like this is popular with spammers, and almost none of Anymail’s
supported ESPs allow it.

Changed in version 2.0: Improved header-handling compatibility with Django’s SMTP EmailBackend.

Unsupported features

Some email capabilities aren’t supported by all ESPs. When you try to send a message using features Anymail can’t
communicate to the current ESP, you’ll get an AnymailUnsupportedFeature error, and the message won’t be
sent.

For example, very few ESPs support alternative message parts added with attach_alternative()
(other than a single text/html part that becomes the HTML body). If you try to send a mes-
sage with other alternative parts, Anymail will raise AnymailUnsupportedFeature. If you’d
like to silently ignore AnymailUnsupportedFeature errors and send the messages anyway, set
ANYMAIL_IGNORE_UNSUPPORTED_FEATURES to True in your settings.py:

ANYMAIL = {
...
"IGNORE_UNSUPPORTED_FEATURES": True,

}

Refused recipients

If all recipients (to, cc, bcc) of a message are invalid or rejected by your ESP at send time, the send call will raise an
AnymailRecipientsRefused error.

You can examine the message’s anymail_status attribute to determine the cause of the error. (See ESP send
status.)

If a single message is sent to multiple recipients, and any recipient is valid (or the message is queued by your ESP
because of rate limiting or send_at), then this exception will not be raised. You can still examine the message’s
anymail_status property after the send to determine the status of each recipient.

You can disable this exception by setting ANYMAIL_IGNORE_RECIPIENT_STATUS to True in your settings.py,
which will cause Anymail to treat any non-API-error response from your ESP as a successful send.

10 Chapter 1. Documentation

https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.backends.smtp.EmailBackend
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage
https://docs.python.org/3.6/library/constants.html#True
https://docs.python.org/3.6/library/constants.html#True

Anymail Documentation, Release 2.1

Note: Many ESPs don’t check recipient status during the send API call. For example, Mailgun always queues sent
messages, so you’ll never catch AnymailRecipientsRefused with the Mailgun backend.

For those ESPs, use Anymail’s delivery event tracking if you need to be notified of sends to blacklisted or invalid
emails.

1.3.2 Anymail additions

Anymail normalizes several common ESP features, like adding metadata or tags to a message. It also normalizes the
response from the ESP’s send API.

There are three ways you can use Anymail’s ESP features with your Django email:

• Just use Anymail’s added attributes directly on any Django EmailMessage object (or any subclass).

• Create your email message using the AnymailMessage class, which exposes extra attributes for the ESP
features.

• Use the AnymailMessageMixin to add the Anymail extras to some other EmailMessage-derived class (your
own or from another Django package).

The first approach is usually the simplest. The other two can be helpful if you are working with Python development
tools that offer type checking or other static code analysis.

ESP send options (AnymailMessage)

class anymail.message.AnymailMessage
A subclass of Django’s EmailMultiAlternatives that exposes additional ESP functionality.

The constructor accepts any of the attributes below, or you can set them directly on the message at any time
before sending:

from anymail.message import AnymailMessage

message = AnymailMessage(
subject="Welcome",
body="Welcome to our site",
to=["New User <user1@example.com>"],
tags=["Onboarding"], # Anymail extra in constructor

)
Anymail extra attributes:
message.metadata = {"onboarding_experiment": "variation 1"}
message.track_clicks = True

message.send()
status = message.anymail_status # available after sending
status.message_id # e.g., '<12345.67890@example.com>'
status.recipients["user1@example.com"].status # e.g., 'queued'

Attributes you can add to messages

1.3. Sending email 11

https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage

Anymail Documentation, Release 2.1

Note: Anymail looks for these attributes on any EmailMessage you send. (You don’t have to use
AnymailMessage.)

envelope_sender
New in version 2.0.

Set this to a str email address that should be used as the message’s envelope sender. If supported by your
ESP, this will become the Return-Path in the recipient’s mailbox.

(Envelope sender is also known as bounce address, MAIL FROM, envelope from, unixfrom, SMTP FROM
command, return path, and several other terms. Confused? Here’s some good info on how envelope sender
relates to return path.)

ESP support for envelope sender varies widely. Be sure to check Anymail’s docs for your specific ESP
before attempting to use it. And note that those ESPs who do support it will often use only the domain
portion of the envelope sender address, overriding the part before the @ with their own encoded bounce
mailbox.

[The envelope_sender attribute is unique to Anymail. If you also use Django’s SMTP EmailBackend,
you can portably control envelope sender by instead setting message.extra_headers["From"] to
the desired email header From, and message.from_email to the envelope sender. Anymail also
allows this approach, for compatibility with the SMTP EmailBackend. See the notes in Django’s bug
tracker.]

metadata
Set this to a dict of metadata values the ESP should store with the message, for later search and retrieval.

message.metadata = {"customer": customer.id,
"order": order.reference_number}

ESPs have differing restrictions on metadata content. For portability, it’s best to stick to alphanumeric
keys, and values that are numbers or strings.

You should format any non-string data into a string before setting it as metadata. See Formatting merge
data.

tags
Set this to a list of str tags to apply to the message (usually for segmenting ESP reporting).

message.tags = ["Order Confirmation", "Test Variant A"]

ESPs have differing restrictions on tags. For portability, it’s best to stick with strings that start with an
alphanumeric character. (Also, Postmark only allows a single tag per message.)

Caution: Some ESPs put metadata and tags in email headers, which are included with the email when
it is delivered. Anything you put in them could be exposed to the recipients, so don’t include sensitive
data.

track_opens
Set this to True or False to override your ESP account default setting for tracking when users open a
message.

message.track_opens = True

12 Chapter 1. Documentation

https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage
https://docs.python.org/3.6/library/stdtypes.html#str
https://en.wikipedia.org/wiki/Bounce_address
https://www.postmastery.com/blog/about-the-return-path-header/
https://www.postmastery.com/blog/about-the-return-path-header/
https://code.djangoproject.com/ticket/9214
https://code.djangoproject.com/ticket/9214
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#True
https://docs.python.org/3.6/library/constants.html#False

Anymail Documentation, Release 2.1

track_clicks
Set this to True or False to override your ESP account default setting for tracking when users click on
a link in a message.

message.track_clicks = False

send_at
Set this to a datetime, date to have the ESP wait until the specified time to send the message. (You
can also use a float or int, which will be treated as a POSIX timestamp as in time.time().)

from datetime import datetime, timedelta
from django.utils.timezone import utc

message.send_at = datetime.now(utc) + timedelta(hours=1)

To avoid confusion, it’s best to provide either an aware datetime (one that has its tzinfo set), or an int
or float seconds-since-the-epoch timestamp.

If you set send_at to a date or a naive datetime (without a timezone), Anymail will interpret it in
Django’s current timezone. (Careful: datetime.now() returns a naive datetime, unless you call it with
a timezone like in the example above.)

The sent message will be held for delivery by your ESP – not locally by Anymail.

esp_extra
Set this to a dict of additional, ESP-specific settings for the message.

Using this attribute is inherently non-portable between ESPs, and is intended as an “escape hatch” for
accessing functionality that Anymail doesn’t (or doesn’t yet) support.

See the notes for each specific ESP for information on its esp_extra handling.

Status response from the ESP

anymail_status
Normalized response from the ESP API’s send call. Anymail adds this to each EmailMessage as it is
sent.

The value is an AnymailStatus. See ESP send status for details.

Convenience methods

(These methods are only available on AnymailMessage or AnymailMessageMixin objects. Unlike the
attributes above, they can’t be used on an arbitrary EmailMessage.)

attach_inline_image_file(path, subtype=None, idstring="img", domain=None)
Attach an inline (embedded) image to the message and return its Content-ID.

This calls attach_inline_image_file() on the message. See Inline images for details and an
example.

attach_inline_image(content, filename=None, subtype=None, idstring="img", domain=None)
Attach an inline (embedded) image to the message and return its Content-ID.

This calls attach_inline_image() on the message. See Inline images for details and an example.

1.3. Sending email 13

https://docs.python.org/3.6/library/constants.html#True
https://docs.python.org/3.6/library/constants.html#False
https://docs.python.org/3.6/library/datetime.html#datetime.datetime
https://docs.python.org/3.6/library/datetime.html#datetime.date
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/time.html#time.time
https://docs.python.org/3.6/library/datetime.html#datetime.datetime
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/datetime.html#datetime.date
https://docs.python.org/3.6/library/datetime.html#datetime.datetime
https://docs.djangoproject.com/en/stable/topics/i18n/timezones/#default-current-time-zone
https://docs.python.org/3.6/library/datetime.html#datetime.datetime.now
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage

Anymail Documentation, Release 2.1

ESP send status

class anymail.message.AnymailStatus
When you send a message through an Anymail backend, Anymail adds an anymail_status attribute to the
EmailMessage, with a normalized version of the ESP’s response.

Anymail backends create this attribute as they process each message. Before that, anymail_status won’t be
present on an ordinary Django EmailMessage or EmailMultiAlternatives—you’ll get an AttributeError if
you try to access it.

This might cause problems in your test cases, because Django substitutes its own locmem EmailBackend
during testing (so anymail_status never gets attached to the EmailMessage). If you run into this, you can:
change your code to guard against a missing anymail_status attribute; switch from using EmailMessage to
AnymailMessage (or the AnymailMessageMixin) to ensure the anymail_status attribute is always there;
or substitute Anymail’s test backend in any affected test cases.

After sending through an Anymail backend, anymail_status will be an object with these attributes:

message_id
The message id assigned by the ESP, or None if the send call failed.

The exact format varies by ESP. Some use a UUID or similar; some use an RFC 2822 Message-ID as
the id:

message.anymail_status.message_id
'<20160306015544.116301.25145@example.org>'

Some ESPs assign a unique message ID for each recipient (to, cc, bcc) of a single message. In that case,
message_id will be a set of all the message IDs across all recipients:

message.anymail_status.message_id
set(['16fd2706-8baf-433b-82eb-8c7fada847da',
'886313e1-3b8a-5372-9b90-0c9aee199e5d'])

status
A set of send statuses, across all recipients (to, cc, bcc) of the message, or None if the send call failed.

message1.anymail_status.status
set(['queued']) # all recipients were queued
message2.anymail_status.status
set(['rejected', 'sent']) # at least one recipient was sent,

and at least one rejected

This is an easy way to check there weren't any problems:
if message3.anymail_status.status.issubset({'queued', 'sent'}):

print("ok!")

Anymail normalizes ESP sent status to one of these values:

• 'sent' the ESP has sent the message (though it may or may not end up delivered)

• 'queued' the ESP has accepted the message and will try to send it asynchronously

• 'invalid' the ESP considers the sender or recipient email invalid

• 'rejected' the recipient is on an ESP blacklist (unsubscribe, previous bounces, etc.)

• 'failed' the attempt to send failed for some other reason

• 'unknown' anything else

14 Chapter 1. Documentation

https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage
https://docs.python.org/3.6/library/exceptions.html#AttributeError
https://docs.djangoproject.com/en/stable/topics/testing/tools/#topics-testing-email
https://docs.python.org/3.6/library/constants.html#None
https://tools.ietf.org/html/rfc2822.html
https://docs.python.org/3.6/library/stdtypes.html#set
https://docs.python.org/3.6/library/stdtypes.html#set
https://docs.python.org/3.6/library/constants.html#None

Anymail Documentation, Release 2.1

Not all ESPs check recipient emails during the send API call – some simply queue the message, and report
problems later. In that case, you can use Anymail’s Tracking sent mail status features to be notified of
delivery status events.

recipients
A dict of per-recipient message ID and status values.

The dict is keyed by each recipient’s base email address (ignoring any display name). Each value in the
dict is an object with status and message_id properties:

message = EmailMultiAlternatives(
to=["you@example.com", "Me <me@example.com>"],
subject="Re: The apocalypse")

message.send()

message.anymail_status.recipients["you@example.com"].status
'sent'
message.anymail_status.recipients["me@example.com"].status
'queued'
message.anymail_status.recipients["me@example.com"].message_id
'886313e1-3b8a-5372-9b90-0c9aee199e5d'

Will be an empty dict if the send call failed.

esp_response
The raw response from the ESP API call. The exact type varies by backend. Accessing this is inherently
non-portable.

This will work with a requests-based backend:
message.anymail_status.esp_response.json()

Inline images

Anymail includes convenience functions to simplify attaching inline images to email.

These functions work with any Django EmailMessage – they’re not specific to Anymail email backends. You can
use them with messages sent through Django’s SMTP backend or any other that properly supports MIME attachments.

(Both functions are also available as convenience methods on Anymail’s AnymailMessage and
AnymailMessageMixin classes.)

anymail.message.attach_inline_image_file(message, path, subtype=None, idstring="img",
domain=None)

Attach an inline (embedded) image to the message and return its Content-ID.

In your HTML message body, prefix the returned id with cid: to make an src attribute:

from django.core.mail import EmailMultiAlternatives
from anymail.message import attach_inline_image_file

message = EmailMultiAlternatives(...)
cid = attach_inline_image_file(message, 'path/to/picture.jpg')
html = '... ...' % cid
message.attach_alternative(html, 'text/html')

message.send()

message must be an EmailMessage (or subclass) object.

1.3. Sending email 15

https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage

Anymail Documentation, Release 2.1

path must be the pathname to an image file. (Its basename will also be used as the attachment’s filename,
which may be visible in some email clients.)

subtype is an optional MIME image subtype, e.g., "png" or "jpg". By default, this is determined auto-
matically from the content.

idstring and domain are optional, and are passed to Python’s make_msgid() to generate the
Content-ID. Generally the defaults should be fine. (But be aware the default domain can leak your server’s
local hostname in the resulting email.)

anymail.message.attach_inline_image(message, content, filename=None, subtype=None, id-
string="img", domain=None)

This is a version of attach_inline_image_file() that accepts raw image data, rather than reading it
from a file.

message must be an EmailMessage (or subclass) object.

content must be the binary image data

filename is an optional str that will be used as as the attachment’s filename – e.g., "picture.jpg". This
may be visible in email clients that choose to display the image as an attachment as well as making it available
for inline use (this is up to the email client). It should be a base filename, without any path info.

subtype, idstring and domain are as described in attach_inline_image_file()

Global send defaults

In your settings.py, you can set ANYMAIL_SEND_DEFAULTS to a dict of default options that will apply to
all messages sent through Anymail:

ANYMAIL = {
...
"SEND_DEFAULTS": {

"metadata": {"district": "North", "source": "unknown"},
"tags": ["myapp", "version3"],
"track_clicks": True,
"track_opens": True,

},
}

At send time, the attributes on each EmailMessage get merged with the global send defaults. For example, with the
settings above:

message = AnymailMessage(...)
message.tags = ["welcome"]
message.metadata = {"source": "Ads", "user_id": 12345}
message.track_clicks = False

message.send()
will send with:
tags: ["myapp", "version3", "welcome"] (merged with defaults)
metadata: {"district": "North", "source": "Ads", "user_id": 12345}
→˓(merged)
track_clicks: False (message overrides defaults)
track_opens: True (from the defaults)

To prevent a message from using a particular global default, set that attribute to None. (E.g., message.tags =
None will send the message with no tags, ignoring the global default.)

16 Chapter 1. Documentation

https://docs.python.org/3.6/library/email.util.html#email.utils.make_msgid
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage
https://docs.python.org/3.6/library/constants.html#None

Anymail Documentation, Release 2.1

Anymail’s send defaults actually work for all django.core.mail.EmailMessage attributes. So you could set
"bcc": ["always-copy@example.com"] to add a bcc to every message. (You could even attach a file to
every message – though your recipients would probably find that annoying!)

You can also set ESP-specific global defaults. If there are conflicts, the ESP-specific value will override the main
SEND_DEFAULTS:

ANYMAIL = {
...
"SEND_DEFAULTS": {

"tags": ["myapp", "version3"],
},
"POSTMARK_SEND_DEFAULTS": {

Postmark only supports a single tag
"tags": ["version3"], # overrides SEND_DEFAULTS['tags'] (not merged!

→˓)
},
"MAILGUN_SEND_DEFAULTS": {

"esp_extra": {"o:dkim": "no"}, # Disable Mailgun DKIM signatures
},

}

AnymailMessageMixin

class anymail.message.AnymailMessageMixin
Mixin class that adds Anymail’s ESP extra attributes and convenience methods to other EmailMessage sub-
classes.

For example, with the django-mail-templated package’s custom EmailMessage:

from anymail.message import AnymailMessageMixin
from mail_templated import EmailMessage

class TemplatedAnymailMessage(AnymailMessageMixin, EmailMessage):
"""
An EmailMessage that supports both Mail-Templated
and Anymail features
"""
pass

msg = TemplatedAnymailMessage(
template_name="order_confirmation.tpl", # Mail-Templated arg
track_opens=True, # Anymail arg
...

)
msg.context = {"order_num": "12345"} # Mail-Templated attribute
msg.tags = ["templated"] # Anymail attribute

1.3.3 Batch sending/merge and ESP templates

If your ESP offers templates and batch-sending/merge capabilities, Anymail can simplify using them in a portable
way. Anymail doesn’t translate template syntax between ESPs, but it does normalize using templates and providing
merge data for batch sends.

Here’s an example using both an ESP stored template and merge data:

1.3. Sending email 17

https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage
https://pypi.python.org/pypi/django-mail-templated

Anymail Documentation, Release 2.1

from django.core.mail import EmailMessage

message = EmailMessage(
subject=None, # use the subject in our stored template
from_email="marketing@example.com",
to=["Wile E. <wile@example.com>", "rr@example.com"])

message.template_id = "after_sale_followup_offer" # use this ESP stored template
message.merge_data = { # per-recipient data to merge into the template

'wile@example.com': {'NAME': "Wile E.",
'OFFER': "15% off anvils"},

'rr@example.com': {'NAME': "Mr. Runner"},
}
message.merge_global_data = { # merge data for all recipients

'PARTNER': "Acme, Inc.",
'OFFER': "5% off any Acme product", # a default if OFFER missing for recipient

}
message.send()

The message’s template_id identifies a template stored at your ESP which provides the message body and subject.
(Assuming the ESP supports those features.)

The message’s merge_data supplies the per-recipient data to substitute for merge fields in your template. Setting
this attribute also lets Anymail know it should use the ESP’s batch sending feature to deliver separate, individually-
customized messages to each address on the “to” list. (Again, assuming your ESP supports that.)

Note: Templates and batch sending capabilities can vary widely between ESPs, as can the syntax for merge fields.
Be sure to read the notes for your specific ESP, and test carefully with a small recipient list before launching a gigantic
batch send.

Although related and often used together, ESP stored templates and merge data are actually independent features.
For example, some ESPs will let you use merge field syntax directly in your EmailMessage body, so you can do
customized batch sending without needing to define a stored template at the ESP.

ESP stored templates

Many ESPs support transactional email templates that are stored and managed within your ESP account. To use an
ESP stored template with Anymail, set template_id on an EmailMessage.

AnymailMessage.template_id
The identifier of the ESP stored template you want to use. For most ESPs, this is a str name or unique id. (See
the notes for your specific ESP.)

message.template_id = "after_sale_followup_offer"

With most ESPs, using a stored template will ignore any body (plain-text or HTML) from the EmailMessage object.

A few ESPs also allow you to define the message’s subject as part of the template, but any subject you set on the
EmailMessagewill override the template subject. To use the subject stored with the ESP template, set the message’s
subject to None:

message.subject = None # use subject from template (if supported)

Similarly, some ESPs can also specify the “from” address in the template definition. Set message.from_email
= None to use the template’s “from.” (You must set this attribute after constructing an EmailMessage object;

18 Chapter 1. Documentation

https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage
https://docs.python.org/3.6/library/constants.html#None
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage

Anymail Documentation, Release 2.1

passing from_email=None to the constructor will use Django’s DEFAULT_FROM_EMAIL setting, overriding your
template value.)

Batch sending with merge data

Several ESPs support “batch transactional sending,” where a single API call can send messages to multiple recipients.
The message is customized for each email on the “to” list by merging per-recipient data into the body and other
message fields.

To use batch sending with Anymail (for ESPs that support it):

• Use “merge fields” (sometimes called “substitution variables” or similar) in your message. This could be in an
ESP stored template referenced by template_id, or with some ESPs you can use merge fields directly in
your EmailMessage (meaning the message itself is treated as an on-the-fly template).

• Set the message’s merge_data attribute to define merge field substitutions for each recipient, and optionally
set merge_global_data to defaults or values to use for all recipients.

• Specify all of the recipients for the batch in the message’s to list.

Caution: It’s critical to set the merge_data attribute: this is how Anymail recognizes the message as a batch
send.

When you provide merge_data, Anymail will tell the ESP to send an individual customized message to each “to”
address. Without it, you may get a single message to everyone, exposing all of the email addresses to all recipients.
(If you don’t have any per-recipient customizations, but still want individual messages, just set merge_data to an
empty dict.)

The exact syntax for merge fields varies by ESP. It might be something like *|NAME|* or -name- or <%name%>.
(Check the notes for your ESP, and remember you’ll need to change the template if you later switch ESPs.)

AnymailMessage.merge_data
A dict of per-recipient template substitution/merge data. Each key in the dict is a recipient email address, and
its value is a dict of merge field names and values to use for that recipient:

message.merge_data = {
'wile@example.com': {'NAME': "Wile E.",

'OFFER': "15% off anvils"},
'rr@example.com': {'NAME': "Mr. Runner",

'OFFER': "instant tunnel paint"},
}

When merge_data is set, Anymail will use the ESP’s batch sending option, so that each to recipient gets an
individual message (and doesn’t see the other emails on the to list).

AnymailMessage.merge_global_data
A dict of template substitution/merge data to use for all recipients. Keys are merge field names in your
message template:

message.merge_global_data = {
'PARTNER': "Acme, Inc.",
'OFFER': "5% off any Acme product", # a default OFFER

}

Merge data values must be strings. (Some ESPs also allow other JSON-serializable types like lists or dicts.) See
Formatting merge data for more information.

1.3. Sending email 19

https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-DEFAULT_FROM_EMAIL
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#dict

Anymail Documentation, Release 2.1

Like all Anymail additions, you can use these extended template and merge attributes with any EmailMessage or
subclass object. (It doesn’t have to be an AnymailMessage.)

Tip: you can add merge_global_data to your global Anymail send defaults to supply merge data avail-
able to all batch sends (e.g, site name, contact info). The global defaults will be merged with any per-message
merge_global_data.

Formatting merge data

If you’re using a date, datetime, Decimal, or anything other than strings and integers, you’ll need to format
them into strings for use as merge data:

product = Product.objects.get(123) # A Django model
total_cost = Decimal('19.99')
ship_date = date(2015, 11, 18)

Won't work -- you'll get "not JSON serializable" errors at send time:
message.merge_global_data = {

'PRODUCT': product,
'TOTAL_COST': total_cost,
'SHIP_DATE': ship_date

}

Do something this instead:
message.merge_global_data = {

'PRODUCT': product.name, # assuming name is a CharField
'TOTAL_COST': "%.2f" % total_cost,
'SHIP_DATE': ship_date.strftime('%B %d, %Y') # US-style "March 15, 2015"

}

These are just examples. You’ll need to determine the best way to format your merge data as strings.

Although floats are usually allowed in merge data, you’ll generally want to format them into strings yourself to avoid
surprises with floating-point precision.

Anymail will raise AnymailSerializationError if you attempt to send a message with merge data (or meta-
data) that can’t be sent to your ESP.

ESP templates vs. Django templates

ESP templating languages are generally proprietary, which makes them inherently non-portable.

Anymail only exposes the stored template capabilities that your ESP already offers, and then simplifies providing
merge data in a portable way. It won’t translate between different ESP template syntaxes, and it can’t do a batch send
if your ESP doesn’t support it.

There are two common cases where ESP template and merge features are particularly useful with Anymail:

• When the people who develop and maintain your transactional email templates are different from the people who
maintain your Django page templates. (For example, you use a single ESP for both marketing and transactional
email, and your marketing team manages all the ESP email templates.)

• When you want to use your ESP’s batch-sending capabilities for performance reasons, where a single API call
can trigger individualized messages to hundreds or thousands of recipients. (For example, sending a daily batch
of shipping notifications.)

If neither of these cases apply, you may find that using Django templates can be a more portable and maintainable
approach for building transactional email.

20 Chapter 1. Documentation

https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage
https://docs.python.org/3.6/library/datetime.html#module-datetime

Anymail Documentation, Release 2.1

1.3.4 Tracking sent mail status

Anymail provides normalized handling for your ESP’s event-tracking webhooks. You can use this to be notified when
sent messages have been delivered, bounced, been opened or had links clicked, among other things.

Webhook support is optional. If you haven’t yet, you’ll need to configure webhooks in your Django project. (You may
also want to review Securing webhooks.)

Once you’ve enabled webhooks, Anymail will send a anymail.signals.tracking custom Django signal for
each ESP tracking event it receives. You can connect your own receiver function to this signal for further processing.

Be sure to read Django’s listening to signals docs for information on defining and connecting signal receivers.

Example:

from anymail.signals import tracking
from django.dispatch import receiver

@receiver(tracking) # add weak=False if inside some other function/class
def handle_bounce(sender, event, esp_name, **kwargs):

if event.event_type == 'bounced':
print("Message %s to %s bounced" % (

event.message_id, event.recipient))

@receiver(tracking)
def handle_click(sender, event, esp_name, **kwargs):

if event.event_type == 'clicked':
print("Recipient %s clicked url %s" % (

event.recipient, event.click_url))

You can define individual signal receivers, or create one big one for all event types, which ever you prefer. You can
even handle the same event in multiple receivers, if that makes your code cleaner. These signal receiver functions are
documented in more detail below.

Note that your tracking signal recevier(s) will be called for all tracking webhook types you’ve enabled at your ESP, so
you should always check the event_type as shown in the examples above to ensure you’re processing the expected
events.

Some ESPs batch up multiple events into a single webhook call. Anymail will invoke your signal receiver once,
separately, for each event in the batch.

Normalized tracking event

class anymail.signals.AnymailTrackingEvent
The event parameter to Anymail’s tracking signal receiver is an object with the following attributes:

event_type
A normalized str identifying the type of tracking event.

Note: Most ESPs will send some, but not all of these event types. Check the specific ESP docs for more
details. In particular, very few ESPs implement the “sent” and “delivered” events.

One of:

• 'queued': the ESP has accepted the message and will try to send it (possibly at a later time).

• 'sent': the ESP has sent the message (though it may or may not get successfully delivered).

1.3. Sending email 21

https://docs.djangoproject.com/en/stable/topics/signals/#module-django.dispatch
https://docs.djangoproject.com/en/stable/topics/signals/#listening-to-signals
https://docs.python.org/3.6/library/stdtypes.html#str

Anymail Documentation, Release 2.1

• 'rejected': the ESP refused to send the messsage (e.g., because of a suppression list, ESP policy,
or invalid email). Additional info may be in reject_reason.

• 'failed': the ESP was unable to send the message (e.g., because of an error rendering an ESP
template)

• 'bounced': the message was rejected or blocked by receiving MTA (message transfer agent—the
receiving mail server).

• 'deferred': the message was delayed by in transit (e.g., because of a transient DNS problem, a
full mailbox, or certain spam-detection strategies). The ESP will keep trying to deliver the message,
and should generate a separate 'bounced' event if later it gives up.

• 'delivered': the message was accepted by the receiving MTA. (This does not guarantee the user
will see it. For example, it might still be classified as spam.)

• 'autoresponded': a robot sent an automatic reply, such as a vacation notice, or a request to prove
you’re a human.

• 'opened': the user opened the message (used with your ESP’s track_opens feature).

• 'clicked': the user clicked a link in the message (used with your ESP’s track_clicks feature).

• 'complained': the recipient reported the message as spam.

• 'unsubscribed': the recipient attempted to unsubscribe (when you are using your ESP’s sub-
scription management features).

• 'subscribed': the recipient attempted to subscribe to a list, or undo an earlier unsubscribe (when
you are using your ESP’s subscription management features).

• 'unknown': anything else. Anymail isn’t able to normalize this event, and you’ll need to examine
the raw esp_event data.

message_id
A str unique identifier for the message, matching the message.anymail_status.message_id
attribute from when the message was sent.

The exact format of the string varies by ESP. (It may or may not be an actual “Message-ID”, and is often
some sort of UUID.)

timestamp
A datetime indicating when the event was generated. (The timezone is often UTC, but the exact behav-
ior depends on your ESP and account settings. Anymail ensures that this value is an aware datetime with
an accurate timezone.)

event_id
A str unique identifier for the event, if available; otherwise None. Can be used to avoid processing the
same event twice. Exact format varies by ESP, and not all ESPs provide an event_id for all event types.

recipient
The str email address of the recipient. (Just the “recipient@example.com” portion.)

metadata
A dict of unique data attached to the message. Will be empty if the ESP doesn’t provide metadata with
its tracking events. (See AnymailMessage.metadata.)

tags
A list of str tags attached to the message. Will be empty if the ESP doesn’t provide tags with its
tracking events. (See AnymailMessage.tags.)

22 Chapter 1. Documentation

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/datetime.html#datetime.datetime
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#str

Anymail Documentation, Release 2.1

reject_reason
For 'bounced' and 'rejected' events, a normalized str giving the reason for the bounce/rejection.
Otherwise None. One of:

• 'invalid': bad email address format.

• 'bounced': bounced recipient. (In a 'rejected' event, indicates the recipient is on your ESP’s
prior-bounces suppression list.)

• 'timed_out': your ESP is giving up after repeated transient delivery failures (which may have
shown up as 'deferred' events).

• 'blocked': your ESP’s policy prohibits this recipient.

• 'spam': the receiving MTA or recipient determined the message is spam. (In a 'rejected' event,
indicates the recipient is on your ESP’s prior-spam-complaints suppression list.)

• 'unsubscribed': the recipient is in your ESP’s unsubscribed suppression list.

• 'other': some other reject reason; examine the raw esp_event.

• None: Anymail isn’t able to normalize a reject/bounce reason for this ESP.

Note: Not all ESPs provide all reject reasons, and this area is often under-documented by the ESP.
Anymail does its best to interpret the ESP event, but you may find (e.g.,) that it will report 'timed_out'
for one ESP, and 'bounced' for another, sending to the same non-existent mailbox.

We appreciate bug reports with the raw esp_event data in cases where Anymail is getting it wrong.

description
If available, a str with a (usually) human-readable description of the event. Otherwise None. For
example, might explain why an email has bounced. Exact format varies by ESP (and sometimes event
type).

mta_response
If available, a str with a raw (intended for email administrators) response from the receiving MTA. Oth-
erwise None. Often includes SMTP response codes, but the exact format varies by ESP (and sometimes
receiving MTA).

user_agent
For 'opened' and 'clicked' events, a str identifying the browser and/or email client the user is
using, if available. Otherwise None.

click_url
For 'clicked' events, the str url the user clicked. Otherwise None.

esp_event
The “raw” event data from the ESP, deserialized into a python data structure. For most ESPs this is either
parsed JSON (as a dict), or HTTP POST fields (as a Django QueryDict).

This gives you (non-portable) access to additional information provided by your ESP. For example, some
ESPs include geo-IP location information with open and click events.

Signal receiver functions

Your Anymail signal receiver must be a function with this signature:

def my_handler(sender, event, esp_name, **kwargs):
(You can name it anything you want.)

1.3. Sending email 23

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.djangoproject.com/en/stable/ref/request-response/#django.http.QueryDict

Anymail Documentation, Release 2.1

Parameters

• sender (class) – The source of the event. (One of the anymail.webhook.* View
classes, but you generally won’t examine this parameter; it’s required by Django’s signal
mechanism.)

• event (AnymailTrackingEvent) – The normalized tracking event. Almost anything
you’d be interested in will be in here.

• esp_name (str) – e.g., “SendMail” or “Postmark”. If you are working with multiple
ESPs, you can use this to distinguish ESP-specific handling in your shared event processing.

• **kwargs – Required by Django’s signal mechanism (to support future extensions).

Returns nothing

Raises any exceptions in your signal receiver will result in a 400 HTTP error to the webhook. See
discussion below.

If (any of) your signal receivers raise an exception, Anymail will discontinue processing the current batch of events
and return an HTTP 400 error to the ESP. Most ESPs respond to this by re-sending the event(s) later, a limited number
of times.

This is the desired behavior for transient problems (e.g., your Django database being unavailable), but can cause
confusion in other error cases. You may want to catch some (or all) exceptions in your signal receiver, log the problem
for later follow up, and allow Anymail to return the normal 200 success response to your ESP.

Some ESPs impose strict time limits on webhooks, and will consider them failed if they don’t respond within (say)
five seconds. And will retry sending the “failed” events, which could cause duplicate processing in your code. If your
signal receiver code might be slow, you should instead queue the event for later, asynchronous processing (e.g., using
something like Celery).

If your signal receiver function is defined within some other function or instance method, you must use the
weak=False option when connecting it. Otherwise, it might seem to work at first, but will unpredictably stop
being called at some point—typically on your production server, in a hard-to-debug way. See Django’s listening to
signals docs for more information.

1.3.5 Pre- and post-send signals

Anymail provides pre-send and post-send signals you can connect to trigger actions whenever messages are sent
through an Anymail backend.

Be sure to read Django’s listening to signals docs for information on defining and connecting signal receivers.

Pre-send signal

You can use Anymail’s pre_send signal to examine or modify messages before they are sent. For example, you
could implement your own email suppression list:

from anymail.exceptions import AnymailCancelSend
from anymail.signals import pre_send
from django.dispatch import receiver
from email.utils import parseaddr

from your_app.models import EmailBlockList

@receiver(pre_send)
def filter_blocked_recipients(sender, message, **kwargs):

(continues on next page)

24 Chapter 1. Documentation

https://docs.python.org/3.6/library/stdtypes.html#str
http://www.celeryproject.org/
https://docs.djangoproject.com/en/stable/topics/signals/#listening-to-signals
https://docs.djangoproject.com/en/stable/topics/signals/#listening-to-signals
https://docs.djangoproject.com/en/stable/topics/signals/#listening-to-signals

Anymail Documentation, Release 2.1

(continued from previous page)

Cancel the entire send if the from_email is blocked:
if not ok_to_send(message.from_email):

raise AnymailCancelSend("Blocked from_email")
Otherwise filter the recipients before sending:
message.to = [addr for addr in message.to if ok_to_send(addr)]
message.cc = [addr for addr in message.cc if ok_to_send(addr)]

def ok_to_send(addr):
This assumes you've implemented an EmailBlockList model
that holds emails you want to reject...
name, email = parseaddr(addr) # just want the <email> part
try:

EmailBlockList.objects.get(email=email)
return False # in the blocklist, so *not* OK to send

except EmailBlockList.DoesNotExist:
return True # *not* in the blocklist, so OK to send

Any changes you make to the message in your pre-send signal receiver will be reflected in the ESP send API call, as
shown for the filtered “to” and “cc” lists above. Note that this will modify the original EmailMessage (not a copy)—be
sure this won’t confuse your sending code that created the message.

If you want to cancel the message altogether, your pre-send receiver function can raise an AnymailCancelSend
exception, as shown for the “from_email” above. This will silently cancel the send without raising any other errors.

anymail.signals.pre_send
Signal delivered before each EmailMessage is sent.

Your pre_send receiver must be a function with this signature:

def my_pre_send_handler(sender, message, esp_name, **kwargs):
(You can name it anything you want.)

Parameters

• sender (class) – The Anymail backend class processing the message. This parameter
is required by Django’s signal mechanism, and despite the name has nothing to do with
the email message’s sender. (You generally won’t need to examine this parameter.)

• message (EmailMessage) – The message being sent. If your receiver modifies the
message, those changes will be reflected in the ESP send call.

• esp_name (str) – The name of the ESP backend in use (e.g., “SendGrid” or “Mail-
gun”).

• **kwargs – Required by Django’s signal mechanism (to support future extensions).

Raises anymail.exceptions.AnymailCancelSend if your receiver wants to cancel
this message without causing errors or interrupting a batch send.

Post-send signal

You can use Anymail’s post_send signal to examine messages after they are sent. This is useful to centralize
handling of the sent status for all messages.

For example, you could implement your own ESP logging dashboard (perhaps combined with Anymail’s event-
tracking webhooks):

1.3. Sending email 25

https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage
https://docs.python.org/3.6/library/stdtypes.html#str

Anymail Documentation, Release 2.1

from anymail.signals import post_send
from django.dispatch import receiver

from your_app.models import SentMessage

@receiver(post_send)
def log_sent_message(sender, message, status, esp_name, **kwargs):

This assumes you've implemented a SentMessage model for tracking sends.
status.recipients is a dict of email: status for each recipient
for email, recipient_status in status.recipients.items():

SentMessage.objects.create(
esp=esp_name,
message_id=recipient_status.message_id, # might be None if send failed
email=email,
subject=message.subject,
status=recipient_status.status, # 'sent' or 'rejected' or ...

)

anymail.signals.post_send
Signal delivered after each EmailMessage is sent.

If you register multiple post-send receivers, Anymail will ensure that all of them are called, even if one raises
an error.

Your post_send receiver must be a function with this signature:

def my_post_send_handler(sender, message, status, esp_name, **kwargs):
(You can name it anything you want.)

Parameters

• sender (class) – The Anymail backend class processing the message. This parameter
is required by Django’s signal mechanism, and despite the name has nothing to do with
the email message’s sender. (You generally won’t need to examine this parameter.)

• message (EmailMessage) – The message that was sent. You should not modify this
in a post-send receiver.

• status (AnymailStatus) – The normalized response from the ESP send call. (Also
available as message.anymail_status.)

• esp_name (str) – The name of the ESP backend in use (e.g., “SendGrid” or “Mail-
gun”).

• **kwargs – Required by Django’s signal mechanism (to support future extensions).

1.3.6 Exceptions

exception anymail.exceptions.AnymailUnsupportedFeature
If the email tries to use features that aren’t supported by the ESP, the send call will raise an
AnymailUnsupportedFeature error, and the message won’t be sent. See Unsupported features.

You can disable this exception (ignoring the unsupported features and sending the message anyway, without
them) by setting ANYMAIL_IGNORE_UNSUPPORTED_FEATURES to True.

exception anymail.exceptions.AnymailRecipientsRefused
Raised when all recipients (to, cc, bcc) of a message are invalid or rejected by your ESP at send time. See
Refused recipients.

26 Chapter 1. Documentation

https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#True

Anymail Documentation, Release 2.1

You can disable this exception by setting ANYMAIL_IGNORE_RECIPIENT_STATUS to True in your set-
tings.py, which will cause Anymail to treat any non-AnymailAPIError response from your ESP as a suc-
cessful send.

exception anymail.exceptions.AnymailAPIError
If the ESP’s API fails or returns an error response, the send call will raise an AnymailAPIError.

The exception’s status_code and response attributes may help explain what went wrong. (Tip: you may
also be able to check the API log in your ESP’s dashboard. See Troubleshooting.)

In production, it’s not unusual for sends to occasionally fail due to transient connectivity problems, ESP mainte-
nance, or other operational issues. Typically these failures have a 5xx status_code. See Handling transient
errors for suggestions on retrying these failed sends.

exception anymail.exceptions.AnymailInvalidAddress
New in version 0.7.

The send call will raise a AnymailInvalidAddress error if you attempt to send a message with invalidly-
formatted email addresses in the from_email or recipient lists.

One source of this error can be using a display-name (“real name”) containing commas or parentheses. Per RFC
5322, you should use double quotes around the display-name portion of an email address:

won't work:
send_mail(from_email='Widgets, Inc. <widgets@example.com>', ...)
must use double quotes around display-name containing comma:
send_mail(from_email='"Widgets, Inc." <widgets@example.com>', ...)

exception anymail.exceptions.AnymailSerializationError
The send call will raise a AnymailSerializationError if there are message attributes Anymail doesn’t
know how to represent to your ESP.

The most common cause of this error is including values other than strings and numbers in your merge_data
or metadata. (E.g., you need to format Decimal and date data to strings before setting them into
merge_data.)

See Formatting merge data for more information.

1.4 Receiving mail

New in version 1.3.

For ESPs that support receiving inbound email, Anymail offers normalized handling of inbound events.

If you didn’t set up webhooks when first installing Anymail, you’ll need to configure webhooks to get started with
inbound email. (You should also review Securing webhooks.)

Once you’ve enabled webhooks, Anymail will send a anymail.signals.inbound custom Django signal
for each ESP inbound message it receives. You can connect your own receiver function to this signal for further
processing. (This is very much like how Anymail handles status tracking events for sent messages. Inbound events
just use a different signal receiver and have different event parameters.)

Be sure to read Django’s listening to signals docs for information on defining and connecting signal receivers.

Example:

from anymail.signals import inbound
from django.dispatch import receiver

(continues on next page)

1.4. Receiving mail 27

https://docs.python.org/3.6/library/constants.html#True
https://tools.ietf.org/html/rfc5322.html
https://tools.ietf.org/html/rfc5322.html
https://docs.djangoproject.com/en/stable/topics/signals/#module-django.dispatch
https://docs.djangoproject.com/en/stable/topics/signals/

Anymail Documentation, Release 2.1

(continued from previous page)

@receiver(inbound) # add weak=False if inside some other function/class
def handle_inbound(sender, event, esp_name, **kwargs):

message = event.message
print("Received message from %s (envelope sender %s) with subject '%s'" % (

message.from_email, message.envelope_sender, message.subject))

Some ESPs batch up multiple inbound messages into a single webhook call. Anymail will invoke your signal receiver
once, separately, for each message in the batch.

Warning: Be careful with inbound email

Inbound email is user-supplied content. There are all kinds of ways a malicious sender can abuse the email format
to give your app misleading or dangerous data. Treat inbound email content with the same suspicion you’d apply
to any user-submitted data. Among other concerns:

• Senders can spoof the From header. An inbound message’s from_email may or may not match the actual
address that sent the message. (There are both legitimate and malicious uses for this capability.)

• Most other fields in email can be falsified. E.g., an inbound message’s date may or may not accurately
reflect when the message was sent.

• Inbound attachments have the same security concerns as user-uploaded files. If you process inbound attach-
ments, you’ll need to verify that the attachment content is valid.

This is particularly important if you publish the attachment content through your app. For example, an
“image” attachment could actually contain an executable file or raw HTML. You wouldn’t want to serve that
as a user’s avatar.

It’s not sufficient to check the attachment’s content-type or filename extension—senders can falsify both of
those. Consider using python-magic or a similar approach to validate the actual attachment content.

The Django docs have additional notes on user-supplied content security.

1.4.1 Normalized inbound event

class anymail.signals.AnymailInboundEvent
The event parameter to Anymail’s inbound signal receiver is an object with the following attributes:

message
An AnymailInboundMessage representing the email that was received. Most of what you’re inter-
ested in will be on this message attribute. See the full details below.

event_type
A normalized str identifying the type of event. For inbound events, this is always 'inbound'.

timestamp
A datetime indicating when the inbound event was generated by the ESP, if available; otherwise None.
(Very few ESPs provide this info.)

This is typically when the ESP received the message or shortly thereafter. (Use event.message.date
if you’re interested in when the message was sent.)

(The timestamp’s timezone is often UTC, but the exact behavior depends on your ESP and account settings.
Anymail ensures that this value is an aware datetime with an accurate timezone.)

event_id
A str unique identifier for the event, if available; otherwise None. Can be used to avoid processing the

28 Chapter 1. Documentation

http://blog.hayleyanderson.us/2015/07/18/validating-file-types-in-django/
https://docs.djangoproject.com/en/stable/topics/security/#user-uploaded-content-security
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/datetime.html#datetime.datetime
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None

Anymail Documentation, Release 2.1

same event twice. The exact format varies by ESP, and very few ESPs provide an event_id for inbound
messages.

An alternative approach to avoiding duplicate processing is to use the inbound message’s Message-ID
header (event.message['Message-ID']).

esp_event
The “raw” event data from the ESP, deserialized into a python data structure. For most ESPs this is either
parsed JSON (as a dict), or sometimes the complete Django HttpRequest received by the webhook.

This gives you (non-portable) access to original event provided by your ESP, which can be helpful if you
need to access data Anymail doesn’t normalize.

1.4.2 Normalized inbound message

class anymail.inbound.AnymailInboundMessage
The message attribute of an AnymailInboundEvent is an AnymailInboundMessage—an extension of
Python’s standard email.message.Message with additional features to simplify inbound handling.

In addition to the base Message functionality, it includes these attributes:

envelope_sender
The actual sending address of the inbound message, as determined by your ESP. This is a str “addr-
spec”—just the email address portion without any display name ("sender@example.com")—or
None if the ESP didn’t provide a value.

The envelope sender often won’t match the message’s From header—for example, messages sent on some-
one’s behalf (mailing lists, invitations) or when a spammer deliberately falsifies the From address.

envelope_recipient
The actual destination address the inbound message was delivered to. This is a str “addr-spec”—just
the email address portion without any display name ("recipient@example.com")—or None if the
ESP didn’t provide a value.

The envelope recipient may not appear in the To or Cc recipient lists—for example, if your inbound address
is bcc’d on a message.

from_email
The value of the message’s From header. Anymail converts this to an EmailAddress object, which
makes it easier to access the parsed address fields:

>>> str(message.from_email) # the fully-formatted address
'"Dr. Justin Customer, CPA" <jcustomer@example.com>'
>>> message.from_email.addr_spec # the "email" portion of the address
'jcustomer@example.com'
>>> message.from_email.display_name # empty string if no display name
'Dr. Justin Customer, CPA'
>>> message.from_email.domain
'example.com'
>>> message.from_email.username
'jcustomer'

(This API is borrowed from Python 3.6’s email.headerregistry.Address.)

If the message has an invalid or missing From header, this property will be None. Note that From headers
can be misleading; see envelope_sender.

to
A list of of parsed EmailAddress objects from the To header, or an empty list if that header is
missing or invalid. Each address in the list has the same properties as shown above for from_email.

1.4. Receiving mail 29

https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.djangoproject.com/en/stable/ref/request-response/#django.http.HttpRequest
https://docs.python.org/3.6/library/email.compat32-message.html#email.message.Message
https://docs.python.org/3.6/library/email.compat32-message.html#email.message.Message
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/email.headerregistry.html#email.headerregistry.Address
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#list

Anymail Documentation, Release 2.1

See envelope_recipient if you need to know the actual inbound address that received the inbound
message.

cc
A list of of parsed EmailAddress objects, like to, but from the Cc headers.

subject
The value of the message’s Subject header, as a str, or None if there is no Subject header.

date
The value of the message’s Date header, as a datetime object, or None if the Date header is missing or
invalid. This attribute will almost always be an aware datetime (with a timezone); in rare cases it can be
naive if the sending mailer indicated that it had no timezone information available.

The Date header is the sender’s claim about when it sent the message, which isn’t necessarily accurate.
(If you need to know when the message was received at your ESP, that might be available in event.
timestamp. If not, you’d need to parse the messages’s Received headers, which can be non-trivial.)

text
The message’s plaintext message body as a str, or None if the message doesn’t include a plaintext body.

html
The message’s HTML message body as a str, or None if the message doesn’t include an HTML body.

attachments
A list of all (non-inline) attachments to the message, or an empty list if there are no attachments. See
Handling Inbound Attachments below for the contents of each list item.

inline_attachments
A dict mapping inline Content-ID references to attachment content. Each key is an “unquoted” cid
without angle brackets. E.g., if the html body contains , you could
get that inline image using message.inline_attachments["abc123..."].

The content of each attachment is described in Handling Inbound Attachments below.

spam_score
A float spam score (usually from SpamAssassin) if your ESP provides it; otherwise None. The range
of values varies by ESP and spam-filtering configuration, so you may need to experiment to find a useful
threshold.

spam_detected
If your ESP provides a simple yes/no spam determination, a bool indicating whether the ESP thinks the
inbound message is probably spam. Otherwise None. (Most ESPs just assign a spam_score and leave
its interpretation up to you.)

stripped_text
If provided by your ESP, a simplified version the inbound message’s plaintext body; otherwise None.

What exactly gets “stripped” varies by ESP, but it often omits quoted replies and sometimes signature
blocks. (And ESPs who do offer stripped bodies usually consider the feature experimental.)

stripped_html
Like stripped_text, but for the HTML body. (Very few ESPs support this.)

Other headers, complex messages, etc.

You can use all of Python’s email.message.Message features with an AnymailInboundMessage. For
example, you can access message headers using Message’s mapping interface:

30 Chapter 1. Documentation

https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/datetime.html#datetime.datetime
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/email.compat32-message.html#email.message.Message
https://docs.python.org/3.6/library/email.compat32-message.html#email.message.Message.__getitem__

Anymail Documentation, Release 2.1

message['reply-to'] # the Reply-To header (header keys are case-insensitive)
message.getall('DKIM-Signature') # list of all DKIM-Signature headers

And you can use Message methods like walk() and get_content_type() to examine more-complex
multipart MIME messages (digests, delivery reports, or whatever).

1.4.3 Handling Inbound Attachments

Anymail converts each inbound attachment to a specialized MIME object with additional methods for handling attach-
ments and integrating with Django. It also backports some helpful MIME methods from newer versions of Python to
all versions supported by Anymail.

The attachment objects in an AnymailInboundMessage’s attachments list and inline_attachments dict
have these methods:

class AnymailInboundMessage

as_uploaded_file()
Returns the attachment converted to a Django UploadedFile object. This is suitable for assigning to a
model’s FileField or ImageField:

allow users to mail in jpeg attachments to set their profile avatars...
if attachment.get_content_type() == "image/jpeg":

for security, you must verify the content is really a jpeg
(you'll need to supply the is_valid_jpeg function)
if is_valid_jpeg(attachment.get_content_bytes()):

user.profile.avatar_image = attachment.as_uploaded_file()

See Django’s docs on Managing files for more information on working with uploaded files.

get_content_type()

get_content_maintype()

get_content_subtype()
The type of attachment content, as specified by the sender. (But remember attachments are essentially
user-uploaded content, so you should never trust the sender.)

See the Python docs for more info on email.message.Message.get_content_type(),
get_content_maintype(), and get_content_subtype().

(Note that you cannot determine the attachment type using code like issubclass(attachment,
email.mime.image.MIMEImage). You should instead use something like attachment.
get_content_maintype() == 'image'. The email package’s specialized MIME subclasses are
designed for constructing new messages, and aren’t used for parsing existing, inbound email messages.)

get_filename()
The original filename of the attachment, as specified by the sender.

Never use this filename directly to write files—that would be a huge security hole. (What would your app
do if the sender gave the filename “/etc/passwd” or “../settings.py”?)

is_attachment()
Returns True for a (non-inline) attachment, False otherwise. (Anymail back-ports Python 3.4.2’s
is_attachment() method to all supported versions.)

is_inline_attachment()
Returns True for an inline attachment (one with Content-Disposition “inline”), False otherwise.

1.4. Receiving mail 31

https://docs.python.org/3.6/library/email.compat32-message.html#email.message.Message.walk
https://docs.python.org/3.6/library/email.compat32-message.html#email.message.Message.get_content_type
https://docs.djangoproject.com/en/stable/ref/files/uploads/#django.core.files.uploadedfile.UploadedFile
https://docs.djangoproject.com/en/stable/ref/models/fields/#django.db.models.FileField
https://docs.djangoproject.com/en/stable/ref/models/fields/#django.db.models.ImageField
https://docs.djangoproject.com/en/stable/topics/files/
https://docs.python.org/3.6/library/email.compat32-message.html#email.message.Message.get_content_type
https://docs.python.org/3.6/library/email.compat32-message.html#email.message.Message.get_content_maintype
https://docs.python.org/3.6/library/email.compat32-message.html#email.message.Message.get_content_subtype
https://docs.python.org/3.6/library/constants.html#True
https://docs.python.org/3.6/library/constants.html#False
https://docs.python.org/3.6/library/email.message.html#email.message.EmailMessage.is_attachment
https://docs.python.org/3.6/library/constants.html#True
https://docs.python.org/3.6/library/constants.html#False

Anymail Documentation, Release 2.1

get_content_disposition()
Returns the lowercased value (without parameters) of the attachment’s Content-Disposition
header. The return value should be either “inline” or “attachment”, or None if the attachment is somehow
missing that header.

(Anymail back-ports Python 3.5’s get_content_disposition()method to all supported versions.)

get_content_text(charset=None, errors=’replace’)
Returns the content of the attachment decoded to Unicode text. (This is generally only appropriate for text
or message-type attachments.)

If provided, charset will override the attachment’s declared charset. (This can be useful if you know the
attachment’s Content-Type has a missing or incorrect charset.)

The errors param is as in decode(). The default “replace” substitutes the Unicode “replacement charac-
ter” for any illegal characters in the text.

Changed in version 2.1: Changed to use attachment’s declared charset by default, and added errors option
defaulting to replace.

get_content_bytes()
Returns the raw content of the attachment as bytes. (This will automatically decode any base64-encoded
attachment data.)

Complex attachments

An Anymail inbound attachment is actually just an AnymailInboundMessage instance, following the
Python email package’s usual recursive representation of MIME messages. All AnymailInboundMessage
and email.message.Message functionality is available on attachment objects (though of course not all
features are meaningful in all contexts).

This can be helpful for, e.g., parsing email messages that are forwarded as attachments to an inbound message.

Anymail loads all attachment content into memory as it processes each inbound message. This may limit the size of
attachments your app can handle, beyond any attachment size limits imposed by your ESP. Depending on how your
ESP transmits attachments, you may also need to adjust Django’s DATA_UPLOAD_MAX_MEMORY_SIZE setting to
successfully receive larger attachments.

1.4.4 Inbound signal receiver functions

Your Anymail inbound signal receiver must be a function with this signature:

def my_handler(sender, event, esp_name, **kwargs):
(You can name it anything you want.)

Parameters

• sender (class) – The source of the event. (One of the anymail.webhook.* View
classes, but you generally won’t examine this parameter; it’s required by Django’s signal
mechanism.)

• event (AnymailInboundEvent) – The normalized inbound event. Almost anything
you’d be interested in will be in here—usually in the AnymailInboundMessage found
in event.message.

• esp_name (str) – e.g., “SendMail” or “Postmark”. If you are working with multiple
ESPs, you can use this to distinguish ESP-specific handling in your shared event processing.

• **kwargs – Required by Django’s signal mechanism (to support future extensions).

32 Chapter 1. Documentation

https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/email.compat32-message.html#email.message.Message.get_content_disposition
https://docs.python.org/3.6/library/stdtypes.html#bytes.decode
https://docs.python.org/3.6/library/email.compat32-message.html#email.message.Message
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-DATA_UPLOAD_MAX_MEMORY_SIZE
https://docs.python.org/3.6/library/stdtypes.html#str

Anymail Documentation, Release 2.1

Returns nothing

Raises any exceptions in your signal receiver will result in a 400 HTTP error to the webhook. See
discussion below.

If (any of) your signal receivers raise an exception, Anymail will discontinue processing the current batch of events
and return an HTTP 400 error to the ESP. Most ESPs respond to this by re-sending the event(s) later, a limited number
of times.

This is the desired behavior for transient problems (e.g., your Django database being unavailable), but can cause
confusion in other error cases. You may want to catch some (or all) exceptions in your signal receiver, log the problem
for later follow up, and allow Anymail to return the normal 200 success response to your ESP.

Some ESPs impose strict time limits on webhooks, and will consider them failed if they don’t respond within (say) five
seconds. And they may then retry sending these “failed” events, which could cause duplicate processing in your code.
If your signal receiver code might be slow, you should instead queue the event for later, asynchronous processing (e.g.,
using something like Celery).

If your signal receiver function is defined within some other function or instance method, you must use the
weak=False option when connecting it. Otherwise, it might seem to work at first, but will unpredictably stop being
called at some point—typically on your production server, in a hard-to-debug way. See Django’s docs on signals for
more information.

1.5 Supported ESPs

Anymail currently supports these Email Service Providers. Click an ESP’s name for specific Anymail settings required,
and notes about any quirks or limitations:

1.5.1 Amazon SES

Anymail integrates with Amazon Simple Email Service (SES) using the Boto 3 AWS SDK for Python, and includes
sending, tracking, and inbound receiving capabilities.

Alternatives

At least two other packages offer Django integration with Amazon SES: django-amazon-ses and django-ses. De-
pending on your needs, one of them may be more appropriate than Anymail.

New in version 2.1.

Installation

You must ensure the boto3 package is installed to use Anymail’s Amazon SES backend. Either include the “ama-
zon_ses” option when you install Anymail:

$ pip install django-anymail[amazon_ses]

or separately run pip install boto3.

To send mail with Anymail’s Amazon SES backend, set:

EMAIL_BACKEND = "anymail.backends.amazon_ses.EmailBackend"

1.5. Supported ESPs 33

http://www.celeryproject.org/
https://docs.djangoproject.com/en/stable/topics/signals/
https://aws.amazon.com/ses/
https://boto3.readthedocs.io/en/stable/
https://pypi.python.org/pypi/django-amazon-ses
https://pypi.python.org/pypi/django-ses
https://pypi.python.org/pypi/boto3

Anymail Documentation, Release 2.1

in your settings.py.

In addition, you must make sure boto3 is configured with AWS credentials having the necessary IAM permissions.
There are several ways to do this; see Credentials in the Boto docs for options. Usually, an IAM role for EC2 instances,
standard Boto environment variables, or a shared AWS credentials file will be appropriate. For more complex cases,
use Anymail’s AMAZON_SES_CLIENT_PARAMS setting to customize the Boto session.

Limitations and quirks

Hard throttling Like most ESPs, Amazon SES throttles sending for new customers. But unlike most ESPs, SES does
not queue and slowly release throttled messages. Instead, it hard-fails the send API call. A strategy for retrying
errors is required with any ESP; you’re likely to run into it right away with Amazon SES.

Tags limitations Amazon SES’s handling for tags is a bit different from other ESPs. Anymail tries to provide a
useful, portable default behavior for its tags feature. See Tags and metadata below for more information and
additional options.

Open and click tracking overrides Anymail’s track_opens and track_clicks are not supported. Although
Amazon SES does support open and click tracking, it doesn’t offer a simple mechanism to override the set-
tings for individual messages. If you need this feature, provide a custom ConfigurationSetName in Anymail’s
esp_extra.

No delayed sending Amazon SES does not support send_at.

No global send defaults for non-Anymail options With the Amazon SES backend, Anymail’s global send defaults
are only supported for Anymail’s added message options (like metadata and esp_extra), not for standard
EmailMessage attributes like bcc or from_email.

Arbitrary alternative parts allowed Amazon SES is one of the few ESPs that does support sending arbitrary alter-
native message parts (beyond just a single text/plain and text/html part).

Spoofed To header and multiple From emails allowed Amazon SES is one of the few ESPs that supports spoofing
the To header (see Additional headers) and supplying multiple addresses in a message’s from_email. (Most
ISPs consider these to be very strong spam signals, and using either them will almost certainly prevent delivery
of your mail.)

Template limitations Messages sent with templates have a number of additional limitations, such as not supporting
attachments. See Batch sending/merge and ESP templates below.

Tags and metadata

Amazon SES provides two mechanisms for associating additional data with sent messages, which Anymail uses to
implement its tags and metadata features:

• SES Message Tags can be used for filtering or segmenting CloudWatch metrics and dashboards, and are avail-
able to Kinesis Firehose streams. (See “How do message tags work?” in the Amazon blog post Introducing
Sending Metrics.)

By default, Anymail does not use SES Message Tags. They have strict limitations on characters allowed, and
are not consistently available to tracking webhooks. (They may be included in SES Event Publishing but not
SES Notifications.)

• Custom Email Headers are available to all SNS notifications (webhooks), but not to CloudWatch or Kinesis.

These are ordinary extension headers included in the sent message (and visible to recipients who view the full
headers). There are no restrictions on characters allowed.

34 Chapter 1. Documentation

https://boto3.readthedocs.io/en/stable/guide/configuration.html#configuring-credentials
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/manage-sending-limits.html
https://aws.amazon.com/blogs/ses/introducing-sending-metrics/
https://aws.amazon.com/blogs/ses/introducing-sending-metrics/
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/monitor-using-event-publishing.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/monitor-sending-using-notifications.html

Anymail Documentation, Release 2.1

By default, Anymail uses only custom email headers. A message’s metadata is sent JSON-encoded in a custom
X-Metadata header, and a message’s tags are sent in custom X-Tag headers. Both are available in Anymail’s
tracking webhooks.

Because Anymail tags are often used for segmenting reports, Anymail has an option to easily send
an Anymail tag as an SES Message Tag that can be used in CloudWatch. Set the Anymail setting
AMAZON_SES_MESSAGE_TAG_NAME to the name of an SES Message Tag whose value will be the single Any-
mail tag on the message. For example, with this setting:

ANYMAIL = {
...
"AMAZON_SES_MESSAGE_TAG_NAME": "Type",

}

this send will appear in CloudWatch with the SES Message Tag "Type": "Marketing":

message = EmailMessage(...)
message.tags = ["Marketing"]
message.send()

Anymail’s AMAZON_SES_MESSAGE_TAG_NAME setting is disabled by default. If you use it, then only a single tag
is supported, and both the tag and the name must be limited to alphanumeric, hyphen, and underscore characters.

For more complex use cases, set the SES Tags parameter directly in Anymail’s esp_extra. See the example below.
(Because custom headers do not work with SES’s SendBulkTemplatedEmail call, esp_extra Tags is the only way to
attach data to SES messages also using Anymail’s template_id and merge_data features.)

esp_extra support

To use Amazon SES features not directly supported by Anymail, you can set a message’s esp_extra to a dict that
will be merged into the params for the SendRawEmail or SendBulkTemplatedEmail SES API call.

Example:

message.esp_extra = {
Override AMAZON_SES_CONFIGURATION_SET_NAME for this message
'ConfigurationSetName': 'NoOpenOrClickTrackingConfigSet',
Authorize a custom sender
'SourceArn': 'arn:aws:ses:us-east-1:123456789012:identity/example.com',
Set Amazon SES Message Tags
'Tags': [

(Names and values must be A-Z a-z 0-9 - and _ only)
{'Name': 'UserID', 'Value': str(user_id)},
{'Name': 'TestVariation', 'Value': 'Subject-Emoji-Trial-A'},

],
}

(You can also set "esp_extra" in Anymail’s global send defaults to apply it to all messages.)

Batch sending/merge and ESP templates

Amazon SES offers ESP stored templates and batch sending with per-recipient merge data. See Amazon’s Sending
personalized email guide for more information.

When you set a message’s template_id to the name of one of your SES templates, Anymail will use the
SES SendBulkTemplatedEmail call to send template messages personalized with data from Anymail’s normalized
merge_data and merge_global_data message attributes.

1.5. Supported ESPs 35

https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.aws.amazon.com/ses/latest/APIReference/API_SendRawEmail.html
https://docs.aws.amazon.com/ses/latest/APIReference/API_SendBulkTemplatedEmail.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/send-personalized-email-api.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/send-personalized-email-api.html
https://docs.aws.amazon.com/ses/latest/APIReference/API_SendBulkTemplatedEmail.html

Anymail Documentation, Release 2.1

message = EmailMessage(
from_email="shipping@example.com",
you must omit subject and body (or set to None) with Amazon SES

→˓templates
to=["alice@example.com", "Bob <bob@example.com>"]

)
message.template_id = "MyTemplateName" # Amazon SES TemplateName
message.merge_data = {

'alice@example.com': {'name': "Alice", 'order_no': "12345"},
'bob@example.com': {'name': "Bob", 'order_no': "54321"},

}
message.merge_global_data = {

'ship_date': "May 15",
}

Amazon’s templated email APIs don’t support several features available for regular email. When template_id is
used:

• Attachments are not supported

• Extra headers are not supported

• Overriding the template’s subject or body is not supported

• Anymail’s metadata is not supported

• Anymail’s tags are only supported with the AMAZON_SES_MESSAGE_TAG_NAME setting; only a single tag
is allowed, and the tag is not directly available to webhooks. (See Tags and metadata above.)

Status tracking webhooks

Anymail can provide normalized status tracking notifications for messages sent through Amazon SES. SES offers two
(confusingly) similar kinds of tracking, and Anymail supports both:

• SES Notifications include delivered, bounced, and complained (spam) Anymail event_types. (Enabling
these notifications may allow you to disable SES “email feedback forwarding.”)

• SES Event Publishing also includes delivered, bounced and complained events, as well as sent, rejected, opened,
clicked, and (template rendering) failed.

Both types of tracking events are delivered to Anymail’s webhook URL through Amazon Simple Notification Service
(SNS) subscriptions.

Amazon’s naming here can be really confusing. We’ll try to be clear about “SES Notifications” vs. “SES Event
Publishing” as the two different kinds of SES tracking events. And then distinguish all of that from “SNS”—the
publish/subscribe service used to notify Anymail’s tracking webhooks about both kinds of SES tracking event.

To use Anymail’s status tracking webhooks with Amazon SES:

1. First, configure Anymail webhooks and deploy your Django project. (Deploying allows Anymail to confirm the
SNS subscription for you in step 3.)

Then in Amazon’s Simple Notification Service console:

2. Create an SNS Topic to receive Amazon SES tracking events. The exact topic name is up to you; choose
something meaningful like SES_Tracking_Events.

3. Subscribe Anymail’s tracking webhook to the SNS Topic you just created. In the SNS console, click into the
topic from step 2, then click the “Create subscription” button. For protocol choose HTTPS. For endpoint enter:

https://random:random@yoursite.example.com/anymail/amazon_ses/tracking/

36 Chapter 1. Documentation

https://docs.aws.amazon.com/ses/latest/DeveloperGuide/monitor-sending-using-notifications.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/monitor-using-event-publishing.html
https://docs.aws.amazon.com/sns/latest/dg/CreateTopic.html

Anymail Documentation, Release 2.1

• random:random is an ANYMAIL_WEBHOOK_SECRET shared secret

• yoursite.example.com is your Django site

Anymail will automatically confirm the SNS subscription. (For other options, see Confirming SNS subscriptions
below.)

Finally, switch to Amazon’s Simple Email Service console:

4. If you want to use SES Notifications: Follow Amazon’s guide to configure SES notifications through SNS,
using the SNS Topic you created above. Choose any event types you want to receive. Be sure to choose “Include
original headers” if you need access to Anymail’s metadata or tags in your webhook handlers.

5. If you want to use SES Event Publishing:

(a) Follow Amazon’s guide to create an SES “Configuration Set”. Name it something meaningful, like Track-
ingConfigSet.

(b) Follow Amazon’s guide to add an SNS event destination for SES event publishing, using the SNS Topic
you created above. Choose any event types you want to receive.

(c) Update your Anymail settings to send using this Configuration Set by default:

ANYMAIL = {
...
"AMAZON_SES_CONFIGURATION_SET_NAME": "TrackingConfigSet",

}

Caution: The delivery, bounce, and complaint event types are available in both SES Notifications and SES
Event Publishing. If you’re using both, don’t enable the same events in both places, or you’ll receive duplicate
notifications with different event_ids.

Note that Amazon SES’s open and click tracking does not distinguish individual recipients. If you send a single
message to multiple recipients, Anymail will call your tracking handler with the “opened” or “clicked” event for every
original recipient of the message, including all to, cc and bcc addresses. (Amazon recommends avoiding multiple
recipients with SES.)

In your tracking signal receiver, the normalized AnymailTrackingEvent’s esp_event will be set to the the parsed,
top-level JSON event object from SES: either SES Notification contents or SES Event Publishing contents. (The two
formats are nearly identical.) You can use this to obtain SES Message Tags (see Tags and metadata) from SES Event
Publishing notifications:

from anymail.signals import tracking
from django.dispatch import receiver

@receiver(tracking) # add weak=False if inside some other function/class
def handle_tracking(sender, event, esp_name, **kwargs):

if esp_name == "Amazon SES":
try:

message_tags = {
name: values[0]
for name, values in event.esp_event["mail"]["tags"].items()}

except KeyError:
message_tags = None # SES Notification (not Event Publishing) event

print("Message %s to %s event %s: Message Tags %r" % (
event.message_id, event.recipient, event.event_type, message_tags))

1.5. Supported ESPs 37

https://docs.aws.amazon.com/ses/latest/DeveloperGuide/configure-sns-notifications.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/event-publishing-create-configuration-set.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/event-publishing-add-event-destination-sns.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/notification-contents.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/event-publishing-retrieving-sns-contents.html

Anymail Documentation, Release 2.1

Anymail does not currently check SNS signature verification, because Amazon has not released a standard way to do
that in Python. Instead, Anymail relies on your WEBHOOK_SECRET to verify SNS notifications are from an authorized
source.

Note: Amazon SNS’s default policy for handling HTTPS notification failures is to retry three times, 20 seconds apart,
and then drop the notification. That means if your webhook is ever offline for more than one minute, you may miss
events.

For most uses, it probably makes sense to configure an SNS retry policy with more attempts over a longer period.
E.g., 20 retries ranging from 5 seconds minimum to 600 seconds (5 minutes) maximum delay between attempts, with
geometric backoff.

Also, SNS does not guarantee notifications will be delivered to HTTPS subscribers like Anymail webhooks. The
longest SNS will ever keep retrying is one hour total. If you need retries longer than that, or guaranteed delivery,
you may need to implement your own queuing mechanism with something like Celery or directly on Amazon Simple
Queue Service (SQS).

Inbound webhook

You can receive email through Amazon SES with Anymail’s normalized inbound handling. See Receiving email with
Amazon SES for background.

Configuring Anymail’s inbound webhook for Amazon SES is similar to installing the tracking webhook. You must
use a different SNS Topic for inbound.

To use Anymail’s inbound webhook with Amazon SES:

1. First, if you haven’t already, configure Anymail webhooks and deploy your Django project. (Deploying allows
Anymail to confirm the SNS subscription for you in step 3.)

2. Create an SNS Topic to receive Amazon SES inbound events. The exact topic name is up to you; choose
something meaningful like SES_Inbound_Events. (If you are also using Anymail’s tracking events, this must be
a different SNS Topic.)

3. Subscribe Anymail’s inbound webhook to the SNS Topic you just created. In the SNS console, click into the
topic from step 2, then click the “Create subscription” button. For protocol choose HTTPS. For endpoint enter:

https://random:random@yoursite.example.com/anymail/amazon_ses/inbound/

• random:random is an ANYMAIL_WEBHOOK_SECRET shared secret

• yoursite.example.com is your Django site

Anymail will automatically confirm the SNS subscription. (For other options, see Confirming SNS subscriptions
below.)

4. Next, follow Amazon’s guide to Setting up Amazon SES email receiving. There are several steps. Come back
here when you get to “Action Options” in the last step, “Creating Receipt Rules.”

5. Anymail supports two SES receipt actions: S3 and SNS. (Both actually use SNS.) You can choose either one:
the SNS action is easier to set up, but the S3 action allows you to receive larger messages and can be more
robust. (You can change at any time, but don’t use both simultaneously.)

• For the SNS action: choose the SNS Topic you created in step 2. Anymail will handle either Base64 or
UTF-8 encoding; use Base64 if you’re not sure.

• For the S3 action: choose or create any S3 bucket that Boto will be able to read. (See IAM permissions;
don’t use a world-readable bucket!) “Object key prefix” is optional. Anymail does not currently support
the “Encrypt message” option. Finally, choose the SNS Topic you created in step 2.

38 Chapter 1. Documentation

https://docs.aws.amazon.com/sns/latest/dg/SendMessageToHttp.verify.signature.html
https://docs.aws.amazon.com/sns/latest/dg/DeliveryPolicies.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/receiving-email.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/receiving-email.html
https://docs.aws.amazon.com/sns/latest/dg/CreateTopic.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/receiving-email-setting-up.html

Anymail Documentation, Release 2.1

Amazon SES will likely deliver a test message to your Anymail inbound handler immediately after you complete the
last step.

If you are using the S3 receipt action, note that Anymail does not delete the S3 object. You can delete it from your
code after successful processing, or set up S3 bucket policies to automatically delete older messages. In your inbound
handler, you can retrieve the S3 object key by prepending the “object key prefix” (if any) from your receipt rule to
Anymail’s event.event_id.

Amazon SNS imposes a 15 second limit on all notifications. This includes time to download the message (if you are
using the S3 receipt action) and any processing in your signal receiver. If the total takes longer, SNS will consider the
notification failed and will make several repeat attempts. To avoid problems, it’s essential any lengthy operations are
offloaded to a background task.

Amazon SNS’s default retry policy times out after one minute of failed notifications. If your webhook is ever unreach-
able for more than a minute, you may miss inbound mail. You’ll probably want to adjust your SNS topic settings to
reduce the chances of that. See the note about retry policies in the tracking webhooks discussion above.

In your inbound signal receiver, the normalized AnymailTrackingEvent’s esp_event will be set to the the parsed,
top-level JSON object described in SES Email Receiving contents.

Confirming SNS subscriptions

Amazon SNS requires HTTPS endpoints (webhooks) to confirm they actually want to subscribe to an SNS Topic. See
Sending SNS messages to HTTPS endpoints in the Amazon SNS docs for more information.

(This has nothing to do with verifying email identities in Amazon SES, and is not related to email recipients confirming
subscriptions to your content.)

Anymail will automatically handle SNS endpoint confirmation for you, for both tracking and inbound webhooks, if
both:

1. You have deployed your Django project with Anymail webhooks enabled and an Anymail WEBHOOK_SECRET
set, before subscribing the SNS Topic to the webhook URL.

(If you subscribed the SNS topic too early, you can re-send the confirmation request later from the Subscriptions
section of the Amazon SNS dashboard.)

2. The SNS endpoint URL includes the correct Anymail WEBHOOK_SECRET as HTTP basic authentication.
(Amazon SNS only allows this with https urls, not plain http.)

Anymail requires a valid secret to ensure the subscription request is coming from you, not some other AWS
user.

If you do not want Anymail to automatically confirm SNS subscriptions for its webhook URLs, set
AMAZON_SES_AUTO_CONFIRM_SNS_SUBSCRIPTIONS to False in your ANYMAIL settings.

When auto-confirmation is disabled (or if Anymail receives an unexpected confirmation request), it will raise an
AnymailWebhookValidationFailure, which should show up in your Django error logging. The error mes-
sage will include the Token you can use to manually confirm the subscription in the Amazon SNS dashboard or through
the SNS API.

Settings

Additional Anymail settings for use with Amazon SES:

AMAZON_SES_CLIENT_PARAMS

Optional. Additional client parameters Anymail should use to create the boto3 session client. Example:

1.5. Supported ESPs 39

https://docs.aws.amazon.com/ses/latest/DeveloperGuide/receiving-email-notifications-contents.html
https://docs.aws.amazon.com/sns/latest/dg/SendMessageToHttp.html
https://docs.python.org/3.6/library/constants.html#False
https://boto3.readthedocs.io/en/stable/reference/core/session.html#boto3.session.Session.client

Anymail Documentation, Release 2.1

ANYMAIL = {
...
"AMAZON_SES_CLIENT_PARAMS": {

example: override normal Boto credentials specifically for Anymail
"aws_access_key_id": os.getenv("AWS_ACCESS_KEY_FOR_ANYMAIL_SES"),
"aws_secret_access_key": os.getenv("AWS_SECRET_KEY_FOR_ANYMAIL_SES"),
"region_name": "us-west-2",
override other default options
"config": {

"connect_timeout": 30,
"read_timeout": 30,

}
},

}

In most cases, it’s better to let Boto obtain its own credentials through one of its other mechanisms: an IAM role for
EC2 instances, standard AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY and AWS_SESSION_TOKEN
environment variables, or a shared AWS credentials file.

AMAZON_SES_SESSION_PARAMS

Optional. Additional session parameters Anymail should use to create the boto3 Session. Example:

ANYMAIL = {
...
"AMAZON_SES_SESSION_PARAMS": {

"profile_name": "anymail-testing",
},

}

AMAZON_SES_CONFIGURATION_SET_NAME

Optional. The name of an Amazon SES Configuration Set Anymail should use when sending messages. The default
is to send without any Configuration Set. Note that a Configuration Set is required to receive SES Event Publishing
tracking events. See Status tracking webhooks above.

You can override this for individual messages with esp_extra.

AMAZON_SES_MESSAGE_TAG_NAME

Optional, default None. The name of an Amazon SES “Message Tag” whose value is set from a message’s Anymail
tags. See Tags and metadata above.

AMAZON_SES_AUTO_CONFIRM_SNS_SUBSCRIPTIONS

Optional boolean, default True. Set to False to prevent Anymail webhooks from automatically accepting Amazon
SNS subscription confirmation requests. See Confirming SNS subscriptions above.

IAM permissions

Anymail requires IAM permissions that will allow it to use these actions:

40 Chapter 1. Documentation

https://boto3.readthedocs.io/en/stable/reference/core/session.html#boto3.session.Session
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/using-configuration-sets.html
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/constants.html#True
https://docs.python.org/3.6/library/constants.html#False

Anymail Documentation, Release 2.1

• To send mail:

– Ordinary (non-templated) sends: ses:SendRawEmail

– Template/merge sends: ses:SendBulkTemplatedEmail

• To automatically confirm webhook SNS subscriptions: sns:ConfirmSubscription

• For status tracking webhooks: no special permissions

• To receive inbound mail:

– With an “SNS action” receipt rule: no special permissions

– With an “S3 action” receipt rule: s3:GetObject on the S3 bucket and prefix used (or S3 Access Control
List read access for inbound messages in that bucket)

This IAM policy covers all of those:

{
"Version": "2012-10-17",
"Statement": [{

"Effect": "Allow",
"Action": ["ses:SendRawEmail", "ses:SendBulkTemplatedEmail"],
"Resource": "*"

}, {
"Effect": "Allow",
"Action": ["sns:ConfirmSubscription"],
"Resource": ["arn:aws:sns:*:*:*"]

}, {
"Effect": "Allow",
"Action": ["s3:GetObject"],
"Resource": ["arn:aws:s3:::MY-PRIVATE-BUCKET-NAME/MY-INBOUND-PREFIX/*"]

}]
}

Following the principle of least privilege, you should omit permissions for any features you aren’t using, and you may
want to add additional restrictions:

• For Amazon SES sending, you can add conditions to restrict senders, recipients, times, or other properties. See
Amazon’s Controlling access to Amazon SES guide.

• For auto-confirming webhooks, you might limit the resource to SNS topics owned by your AWS account, and/or
specific topic names or patterns. E.g., "arn:aws:sns:*:0000000000000000:SES_*_Events" (re-
placing the zeroes with your numeric AWS account id). See Amazon’s guide to Amazon SNS ARNs.

• For inbound S3 delivery, there are multiple ways to control S3 access and data retention. See Amazon’s Manag-
ing access permissions to your Amazon S3 resources. (And obviously, you should never store incoming emails
to a public bucket!)

Also, you may need to grant Amazon SES (but not Anymail) permission to write to your inbound bucket. See
Amazon’s Giving permissions to Amazon SES for email receiving.

• For all operations, you can limit source IP, allowable times, user agent, and more. (Requests from Anymail will
include “django-anymail/version” along with Boto’s user-agent.) See Amazon’s guide to IAM condition context
keys.

1.5.2 Mailgun

Anymail integrates with the Mailgun transactional email service from Rackspace, using their REST API.

1.5. Supported ESPs 41

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/control-user-access.html
https://docs.aws.amazon.com/sns/latest/dg/UsingIAMwithSNS.html#SNS_ARN_Format
https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-access-control.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-access-control.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/receiving-email-permissions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://mailgun.com

Anymail Documentation, Release 2.1

Settings

EMAIL_BACKEND

To use Anymail’s Mailgun backend, set:

EMAIL_BACKEND = "anymail.backends.mailgun.EmailBackend"

in your settings.py.

MAILGUN_API_KEY

Required. Your Mailgun API key:

ANYMAIL = {
...
"MAILGUN_API_KEY": "<your API key>",

}

Anymail will also look for MAILGUN_API_KEY at the root of the settings file if neither
ANYMAIL["MAILGUN_API_KEY"] nor ANYMAIL_MAILGUN_API_KEY is set.

MAILGUN_SENDER_DOMAIN

If you are using a specific Mailgun sender domain that is different from your messages’ from_email domains, set
this to the domain you’ve configured in your Mailgun account.

If your messages’ from_email domains always match a configured Mailgun sender domain, this setting is not
needed.

See Email sender domain below for examples.

MAILGUN_API_URL

The base url for calling the Mailgun API. It does not include the sender domain. (Anymail figures this out for you.)

The default is MAILGUN_API_URL = "https://api.mailgun.net/v3" (It’s unlikely you would need to
change this.)

Email sender domain

Mailgun’s API requires identifying the sender domain. By default, Anymail uses the domain of each messages’s
from_email (e.g., “example.com” for “from@example.com”).

You will need to override this default if you are using a dedicated Mailgun sender domain that is different from a
message’s from_email domain.

For example, if you are sending from “orders@example.com”, but your Mailgun account is configured for
“mail1.example.com”, you should provide MAILGUN_SENDER_DOMAIN in your settings.py:

42 Chapter 1. Documentation

https://help.mailgun.com/hc/en-us/articles/202256730-How-do-I-pick-a-domain-name-for-my-Mailgun-account-
https://help.mailgun.com/hc/en-us/articles/202256730-How-do-I-pick-a-domain-name-for-my-Mailgun-account-

Anymail Documentation, Release 2.1

ANYMAIL = {
...
"MAILGUN_API_KEY": "<your API key>",
"MAILGUN_SENDER_DOMAIN": "mail1.example.com"

}

If you need to override the sender domain for an individual message, use Anymail’s envelope_sender (only the
domain is used; anything before the @ is ignored):

message = EmailMessage(from_email="marketing@example.com", ...)
message.envelope_sender = "anything@mail2.example.com" # the "anything@" is
→˓ignored

Changed in version 2.0: Earlier Anymail versions looked for a special sender_domain key in the message’s
esp_extra to override Mailgun’s sender domain. This is still supported, but may be deprecated in a future release.
Using envelope_sender as shown above is now preferred.

exp_extra support

Anymail’s Mailgun backend will pass all esp_extra values directly to Mailgun. You can use any of the (non-file)
parameters listed in the Mailgun sending docs. Example:

message = AnymailMessage(...)
message.esp_extra = {

'o:testmode': 'yes', # use Mailgun's test mode
}

Limitations and quirks

Metadata keys and tracking webhooks Because of the way Mailgun supplies custom data (user-variables) to web-
hooks, there are a few metadata keys that Anymail cannot reliably retrieve in some tracking events. You should
avoid using “body-plain”, “h”, “message-headers”, “message-id” or “tag” as metadata keys if you need to
access that metadata from an opened, clicked, or unsubscribed tracking event handler.

Envelope sender uses only domain Anymail’s envelope_sender is used to select your Mailgun sender domain.
For obvious reasons, only the domain portion applies. You can use anything before the @, and it will be ignored.

Batch sending/merge and ESP templates

Mailgun does not offer ESP stored templates, so Anymail’s template_id message attribute is not supported with
the Mailgun backend.

Mailgun does support batch sending with per-recipient merge data. You can refer to Mailgun “recipient vari-
ables” in your message subject and body, and supply the values with Anymail’s normalized merge_data and
merge_global_data message attributes:

message = EmailMessage(
...
subject="Your order %recipient.order_no% has shipped",
body="""Hi %recipient.name%,

We shipped your order %recipient.order_no%
on %recipient.ship_date%.""",

to=["alice@example.com", "Bob <bob@example.com>"]

(continues on next page)

1.5. Supported ESPs 43

https://documentation.mailgun.com/api-sending.html#sending

Anymail Documentation, Release 2.1

(continued from previous page)

)
(you'd probably also set a similar html body with %recipient.___%
→˓variables)
message.merge_data = {

'alice@example.com': {'name': "Alice", 'order_no': "12345"},
'bob@example.com': {'name': "Bob", 'order_no': "54321"},

}
message.merge_global_data = {

'ship_date': "May 15" # Anymail maps globals to all recipients
}

Mailgun does not natively support global merge data. Anymail emulates the capability by copying any
merge_global_data values to each recipient’s section in Mailgun’s “recipient-variables” API parameter.

See the Mailgun batch sending docs for more information.

Status tracking webhooks

If you are using Anymail’s normalized status tracking, enter the url in your Mailgun dashboard on the “Webhooks”
tab. Mailgun allows you to enter a different URL for each event type: just enter this same Anymail tracking URL for
all events you want to receive:

https://random:random@yoursite.example.com/anymail/mailgun/tracking/

• random:random is an ANYMAIL_WEBHOOK_SECRET shared secret

• yoursite.example.com is your Django site

If you use multiple Mailgun sending domains, you’ll need to enter the webhook URLs for each of them, using the
selector on the left side of Mailgun’s dashboard.

Mailgun implements a limited form of webhook signing, and Anymail will verify these signatures (based on your
MAILGUN_API_KEY Anymail setting).

Mailgun will report these Anymail event_types: delivered, rejected, bounced, complained, unsubscribed, opened,
clicked.

The event’s esp_event field will be a Django QueryDict object of Mailgun event fields.

Inbound webhook

If you want to receive email from Mailgun through Anymail’s normalized inbound handling, follow Mailgun’s Receiv-
ing, Storing and Fowarding Messages guide to set up an inbound route that forwards to Anymail’s inbound webhook.
(You can configure routes using Mailgun’s API, or simply using the “Routes” tab in your Mailgun dashboard.)

The action for your route will be either:

forward("https://random:random@yoursite.example.com/anymail/mailgun/
inbound/") forward("https://random:random@yoursite.example.com/
anymail/mailgun/inbound_mime/")

• random:random is an ANYMAIL_WEBHOOK_SECRET shared secret

• yoursite.example.com is your Django site

Anymail accepts either of Mailgun’s “fully-parsed” (. . . /inbound/) and “raw MIME” (. . . /inbound_mime/) formats;
the URL tells Mailgun which you want. Because Anymail handles parsing and normalizing the data, both are equally
easy to use. The raw MIME option will give the most accurate representation of any received email (including

44 Chapter 1. Documentation

https://documentation.mailgun.com/user_manual.html#batch-sending
https://mailgun.com/app/dashboard
https://docs.djangoproject.com/en/stable/ref/request-response/#django.http.QueryDict
https://documentation.mailgun.com/user_manual.html#webhooks
https://documentation.mailgun.com/en/latest/user_manual.html#receiving-forwarding-and-storing-messages
https://documentation.mailgun.com/en/latest/user_manual.html#receiving-forwarding-and-storing-messages
https://mailgun.com/app/dashboard

Anymail Documentation, Release 2.1

complex forms like multi-message mailing list digests). The fully-parsed option may use less memory while processing
messages with many large attachments.

If you want to use Anymail’s normalized spam_detected and spam_score attributes, you’ll need to set your
Mailgun domain’s inbound spam filter to “Deliver spam, but add X-Mailgun-SFlag and X-Mailgun-SScore headers”
(in the Mailgun dashboard on the “Domains” tab).

1.5.3 Mailjet

Anymail integrates with the Mailjet email service, using their transactional Send API (v3).

New in version 0.11.

Note: Mailjet is developing an improved v3.1 Send API (in public beta as of mid-2017). Once the v3.1 API is
released, Anymail will switch to it. This change should be largely transparent to your code, unless you are using
Anymail’s esp_extra feature to set API-specific options.

Settings

EMAIL_BACKEND

To use Anymail’s Mailjet backend, set:

EMAIL_BACKEND = "anymail.backends.mailjet.EmailBackend"

in your settings.py.

MAILJET_API_KEY and MAILJET_SECRET_KEY

Your Mailjet API key and secret key, from your Mailjet account REST API settings under API Key Management.
(Mailjet’s documentation also sometimes uses “API private key” to mean the same thing as “secret key.”)

ANYMAIL = {
...
"MAILJET_API_KEY": "<your API key>",
"MAILJET_SECRET_KEY": "<your API secret>",

}

You can use either a master or sub-account API key.

Anymail will also look for MAILJET_API_KEY and MAILJET_SECRET_KEY at the root of the settings file if
neither ANYMAIL["MAILJET_API_KEY"] nor ANYMAIL_MAILJET_API_KEY is set.

MAILJET_API_URL

The base url for calling the Mailjet API.

The default is MAILJET_API_URL = "https://api.mailjet.com/v3" (It’s unlikely you would need to
change this. This setting cannot be used to opt into a newer API version; the parameters are not backwards compatible.)

1.5. Supported ESPs 45

https://mailgun.com/app/dashboard
https://www.mailjet.com/
https://dev.mailjet.com/guides/#choose-sending-method
https://dev.mailjet.com/guides/#send-api-v3-1-beta
https://app.mailjet.com/account/api_keys

Anymail Documentation, Release 2.1

esp_extra support

To use Mailjet features not directly supported by Anymail, you can set a message’s esp_extra to a dict of Mailjet’s
Send API json properties. Your esp_extra dict will be merged into the parameters Anymail has constructed for the
send, with esp_extra having precedence in conflicts.

Note: Any esp_extra settings will need to be updated when Anymail changes to use Mailjet’s upcoming v3.1
API. (See note above.)

Example:

message.esp_extra = {
Mailjet v3.0 Send API options:
"Mj-prio": 3, # Use Mailjet critically-high priority queue
"Mj-CustomID": my_event_tracking_id,

}

(You can also set "esp_extra" in Anymail’s global send defaults to apply it to all messages.)

Limitations and quirks

Single tag Anymail uses Mailjet’s campaign option for tags, and Mailjet allows only a single campaign per message.
If your message has two or more tags, you’ll get an AnymailUnsupportedFeature error—or if you’ve
enabled ANYMAIL_IGNORE_UNSUPPORTED_FEATURES, Anymail will use only the first tag.

No delayed sending Mailjet does not support send_at.

Envelope sender may require approval Anymail passes envelope_sender to Mailjet, but this may result in an
API error if you have not received special approval from Mailjet support to use custom senders.

Commas in recipient names Mailjet’s v3 API does not properly handle commas in recipient display-names if your
message also uses the cc or bcc fields. (Tested July, 2017, and confirmed with Mailjet API support.)

If your message would be affected, Anymail attempts to work around the problem by switching to MIME
encoded-word syntax where needed.

Most modern email clients should support this syntax, but if you run into issues either avoid using cc and bcc,
or strip commas from all recipient names (in to, cc, and bcc) before sending.

Merge data not compatible with cc/bcc Mailjet’s v3 API is not capable of representing both cc or bcc fields and
merge_data in the same message. If you attempt to combine them, Anymail will raise an error at send time.

(The latter two limitations should be resolved in a future release when Anymail switches to Mailjet’s upcoming v3.1
API.)

Batch sending/merge and ESP templates

Mailjet offers both ESP stored templates and batch sending with per-recipient merge data.

You can use a Mailjet stored transactional template by setting a message’s template_id to the template’s numeric
template ID. (Not the template’s name. To get the numeric template id, click on the name in your Mailjet transactional
templates, then look for “Template ID” above the preview that appears.)

Supply the template merge data values with Anymail’s normalized merge_data and merge_global_data mes-
sage attributes.

46 Chapter 1. Documentation

https://docs.python.org/3.6/library/stdtypes.html#dict
https://dev.mailjet.com/guides/#send-api-json-properties
https://dev.mailjet.com/guides/#grouping-into-a-campaign
https://en.wikipedia.org/wiki/MIME#Encoded-Word
https://en.wikipedia.org/wiki/MIME#Encoded-Word
https://app.mailjet.com/templates/transactional
https://app.mailjet.com/templates/transactional

Anymail Documentation, Release 2.1

message = EmailMessage(
...
omit subject and body (or set to None) to use template content
to=["alice@example.com", "Bob <bob@example.com>"]

)
message.template_id = "176375" # Mailjet numeric template id
message.from_email = None # Use the From address stored with the template
message.merge_data = {

'alice@example.com': {'name': "Alice", 'order_no': "12345"},
'bob@example.com': {'name': "Bob", 'order_no': "54321"},

}
message.merge_global_data = {

'ship_date': "May 15",
}

Any from_email in your EmailMessage will override the template’s default sender address. To use the template’s
sender, you must explicitly set from_email = None after creating the EmailMessage, as shown above. (If you
omit this, Django’s default DEFAULT_FROM_EMAIL will be used.)

Instead of creating a stored template at Mailjet, you can also refer to merge fields directly in an EmailMessage’s
body—the message itself is used as an on-the-fly template:

message = EmailMessage(
from_email="orders@example.com",
to=["alice@example.com", "Bob <bob@example.com>"],
subject="Your order has shipped", # subject doesn't support on-the-fly

→˓merge fields
Use [[var:FIELD]] to for on-the-fly merge into plaintext or html body:
body="Dear [[var:name]]: Your order [[var:order_no]] shipped on

→˓[[var:ship_date]]."
)
message.merge_data = {

'alice@example.com': {'name': "Alice", 'order_no': "12345"},
'bob@example.com': {'name': "Bob", 'order_no': "54321"},

}
message.merge_global_data = {

'ship_date': "May 15",
}

(Note that on-the-fly templates use square brackets to indicate “personalization” merge fields, rather than the curly
brackets used with stored templates in Mailjet’s template language.)

See Mailjet’s template documentation and template language docs for more information.

Status tracking webhooks

If you are using Anymail’s normalized status tracking, enter the url in your Mailjet account REST API settings under
Event tracking (triggers):

https://random:random@yoursite.example.com/anymail/mailjet/tracking/

• random:random is an ANYMAIL_WEBHOOK_SECRET shared secret

• yoursite.example.com is your Django site

Be sure to enter the URL in the Mailjet settings for all the event types you want to receive. It’s also recommended to
select the “group events” checkbox for each trigger, to minimize your server load.

1.5. Supported ESPs 47

https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-DEFAULT_FROM_EMAIL
https://dev.mailjet.com/guides/#personalisation
https://www.mailjet.com/docs/template_builder_transactional
https://dev.mailjet.com/template-language/
https://app.mailjet.com/account/triggers

Anymail Documentation, Release 2.1

Mailjet will report these Anymail event_types: rejected, bounced, deferred, delivered, opened, clicked, com-
plained, unsubscribed.

The event’s esp_event field will be a dict of Mailjet event fields, for a single event. (Although Mailjet calls
webhooks with batches of events, Anymail will invoke your signal receiver separately for each event in the batch.)

Inbound webhook

If you want to receive email from Mailjet through Anymail’s normalized inbound handling, follow Mailjet’s Parse API
inbound emails guide to set up Anymail’s inbound webhook.

The parseroute Url parameter will be:

https://random:random@yoursite.example.com/anymail/mailjet/inbound/

• random:random is an ANYMAIL_WEBHOOK_SECRET shared secret

• yoursite.example.com is your Django site

Once you’ve done Mailjet’s “basic setup” to configure the Parse API webhook, you can skip ahead to the “use your
own domain” section of their guide. (Anymail normalizes the inbound event for you, so you won’t need to worry
about Mailjet’s event and attachment formats.)

1.5.4 Mandrill

Anymail integrates with the Mandrill transactional email service from MailChimp.

Note: Limited Support for Mandrill

Anymail is developed to the public Mandrill documentation, but unlike other supported ESPs, we are unable to test
or debug against the live Mandrill APIs. (MailChimp discourages use of Mandrill by “developers,” and doesn’t offer
testing access for packages like Anymail.)

As a result, Anymail bugs with Mandrill will generally be discovered by Anymail’s users, in production; Anymail’s
maintainers often won’t be able to answer Mandrill-specific questions; and fixes and improvements for Mandrill will
tend to lag other ESPs.

If you are integrating only Mandrill, and not considering one of Anymail’s other ESPs, you might prefer using
MailChimp’s official mandrill python package instead of Anymail.

Settings

EMAIL_BACKEND

To use Anymail’s Mandrill backend, set:

EMAIL_BACKEND = "anymail.backends.mandrill.EmailBackend"

in your settings.py.

MANDRILL_API_KEY

Required. Your Mandrill API key:

48 Chapter 1. Documentation

https://docs.python.org/3.6/library/stdtypes.html#dict
https://dev.mailjet.com/guides/#events
https://dev.mailjet.com/guides/#parse-api-inbound-emails
https://dev.mailjet.com/guides/#parse-api-inbound-emails
http://mandrill.com/
https://pypi.python.org/pypi/mandrill

Anymail Documentation, Release 2.1

ANYMAIL = {
...
"MANDRILL_API_KEY": "<your API key>",

}

Anymail will also look for MANDRILL_API_KEY at the root of the settings file if neither
ANYMAIL["MANDRILL_API_KEY"] nor ANYMAIL_MANDRILL_API_KEY is set.

MANDRILL_WEBHOOK_KEY

Required if using Anymail’s webhooks. The “webhook authentication key” issued by Mandrill. More info in Man-
drill’s KB.

MANDRILL_WEBHOOK_URL

Required only if using Anymail’s webhooks and the hostname your Django server sees is different from the pub-
lic webhook URL you provided Mandrill. (E.g., if you have a proxy in front of your Django server that forwards
“https://yoursite.example.com” to “http://localhost:8000/”).

If you are seeing AnymailWebhookValidationFailure errors from your webhooks, set this to the exact web-
hook URL you entered in Mandrill’s settings.

MANDRILL_API_URL

The base url for calling the Mandrill API. The default is MANDRILL_API_URL = "https://mandrillapp.
com/api/1.0", which is the secure, production version of Mandrill’s 1.0 API.

(It’s unlikely you would need to change this.)

esp_extra support

To use Mandrill features not directly supported by Anymail, you can set a message’s esp_extra to a dict of
parameters to merge into Mandrill’s messages/send API call. Note that a few parameters go at the top level, but
Mandrill expects most options within a 'message' sub-dict—be sure to check their API docs:

message.esp_extra = {
Mandrill expects 'ip_pool' at top level...
'ip_pool': 'Bulk Pool',
... but 'subaccount' must be within a 'message' dict:
'message': {

'subaccount': 'Marketing Dept.'
}

}

Anymail has special handling that lets you specify Mandrill’s 'recipient_metadata' as a simple, pythonic
dict (similar in form to Anymail’s merge_data), rather than Mandrill’s more complex list of rcpt/values dicts.
You can use whichever style you prefer (but either way, recipient_metadata must be in esp_extra['message']).

Similary, Anymail allows Mandrill’s 'template_content' in esp_extra (top level) either as a pythonic dict
(similar to Anymail’s merge_global_data) or as Mandrill’s more complex list of name/content dicts.

1.5. Supported ESPs 49

https://mandrill.zendesk.com/hc/en-us/articles/205583257
https://docs.python.org/3.6/library/stdtypes.html#dict
https://mandrillapp.com/api/docs/messages.JSON.html#method=send
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#dict

Anymail Documentation, Release 2.1

Limitations and quirks

Envelope sender uses only domain Anymail’s envelope_sender is used to populate Mandrill’s
'return_path_domain'—but only the domain portion. (Mandrill always generates its own encoded
mailbox for the envelope sender.)

Batch sending/merge and ESP templates

Mandrill offers both ESP stored templates and batch sending with per-recipient merge data.

You can use a Mandrill stored template by setting a message’s template_id to the template’s name. Alternatively,
you can refer to merge fields directly in an EmailMessage’s subject and body—the message itself is used as an on-the-
fly template.

In either case, supply the merge data values with Anymail’s normalized merge_data and merge_global_data
message attributes.

This example defines the template inline, using Mandrill's
default MailChimp merge *|field|* syntax.
You could use a stored template, instead, with:
message.template_id = "template name"
message = EmailMessage(

...
subject="Your order *|order_no|* has shipped",
body="""Hi *|name|*,

We shipped your order *|order_no|*
on *|ship_date|*.""",

to=["alice@example.com", "Bob <bob@example.com>"]
)
(you'd probably also set a similar html body with merge fields)
message.merge_data = {

'alice@example.com': {'name': "Alice", 'order_no': "12345"},
'bob@example.com': {'name': "Bob", 'order_no': "54321"},

}
message.merge_global_data = {

'ship_date': "May 15",
}

When you supply per-recipient merge_data, Anymail automatically forces Mandrill’s preserve_recipients
option to false, so that each person in the message’s “to” list sees only their own email address.

To use the subject or from address defined with a Mandrill template, set the message’s subject or from_email
attribute to None.

See the Mandrill’s template docs for more information.

Status tracking and inbound webhooks

If you are using Anymail’s normalized status tracking and/or inbound handling, setting up Anymail’s webhook URL
requires deploying your Django project twice:

1. First, follow the instructions to configure Anymail’s webhooks. You must deploy before adding the webhook
URL to Mandrill, because Mandrill will attempt to verify the URL against your production server.

Once you’ve deployed, then set Anymail’s webhook URL in Mandrill, following their instructions for tracking
event webhooks (be sure to check the boxes for the events you want to receive) and/or inbound route webhooks.
In either case, the webhook url is:

50 Chapter 1. Documentation

https://docs.python.org/3.6/library/constants.html#None
https://mandrill.zendesk.com/hc/en-us/articles/205582507-Getting-Started-with-Templates
https://mandrill.zendesk.com/hc/en-us/articles/205583217-Introduction-to-Webhooks
https://mandrill.zendesk.com/hc/en-us/articles/205583217-Introduction-to-Webhooks
https://mandrill.zendesk.com/hc/en-us/articles/205583197-Inbound-Email-Processing-Overview

Anymail Documentation, Release 2.1

https://random:random@yoursite.example.com/anymail/mandrill/

• random:random is an ANYMAIL_WEBHOOK_SECRET shared secret

• yoursite.example.com is your Django site

• (Note: Unlike Anymail’s other supported ESPs, the Mandrill webhook uses this single url for
both tracking and inbound events.)

2. Mandrill will provide you a “webhook authentication key” once it verifies the URL is working. Add this
to your Django project’s Anymail settings under MANDRILL_WEBHOOK_KEY . (You may also need to set
MANDRILL_WEBHOOK_URL depending on your server config.) Then deploy your project again.

Mandrill implements webhook signing on the entire event payload, and Anymail verifies this signature. Until the
correct webhook key is set, Anymail will raise an exception for any webhook calls from Mandrill (other than the
initial validation request).

Mandrill’s webhook signature also covers the exact posting URL. Anymail can usually figure out the correct (public)
URL where Mandrill called your webhook. But if you’re getting an AnymailWebhookValidationFailure
with a different URL than you provided Mandrill, you may need to examine your Django
SECURE_PROXY_SSL_HEADER, USE_X_FORWARDED_HOST, and/or USE_X_FORWARDED_PORT settings.
If all else fails, you can set Anymail’s MANDRILL_WEBHOOK_URL to the same public webhook URL you gave
Mandrill.

Mandrill will report these Anymail event_types: sent, rejected, deferred, bounced, opened, clicked, complained,
unsubscribed, inbound. Mandrill does not support delivered events. Mandrill “whitelist” and “blacklist” change events
will show up as Anymail’s unknown event_type.

The event’s esp_event field will be a dict of Mandrill event fields, for a single event. (Although Mandrill calls
webhooks with batches of events, Anymail will invoke your signal receiver separately for each event in the batch.)

Changed in version 1.3: Earlier Anymail releases used .../anymail/mandrill/tracking/ as the tracking
webhook url. With the addition of inbound handling, Anymail has dropped “tracking” from the recommended url for
new installations. But the older url is still supported. Existing installations can continue to use it—and can even install
it on a Mandrill inbound route to avoid issuing a new webhook key.

Migrating from Djrill

Anymail has its origins as a fork of the Djrill package, which supported only Mandrill. If you are migrating from Djrill
to Anymail – e.g., because you are thinking of switching ESPs – you’ll need to make a few changes to your code.

Changes to settings

MANDRILL_API_KEY Will still work, but consider moving it into the ANYMAIL settings dict, or changing it to
ANYMAIL_MANDRILL_API_KEY .

MANDRILL_SETTINGS Use ANYMAIL_SEND_DEFAULTS and/or ANYMAIL_MANDRILL_SEND_DEFAULTS
(see Global send defaults).

There is one slight behavioral difference between ANYMAIL_SEND_DEFAULTS and Djrill’s
MANDRILL_SETTINGS: in Djrill, setting tags or merge_vars on a message would completely
override any global settings defaults. In Anymail, those message attributes are merged with the values from
ANYMAIL_SEND_DEFAULTS.

MANDRILL_SUBACCOUNT Set esp_extra globally in ANYMAIL_SEND_DEFAULTS:

1.5. Supported ESPs 51

https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-SECURE_PROXY_SSL_HEADER
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-USE_X_FORWARDED_HOST
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-USE_X_FORWARDED_PORT
https://docs.python.org/3.6/library/stdtypes.html#dict
https://github.com/brack3t/Djrill

Anymail Documentation, Release 2.1

ANYMAIL = {
...
"MANDRILL_SEND_DEFAULTS": {

"esp_extra": {
"message": {

"subaccount": "<your subaccount>"
}

}
}

}

MANDRILL_IGNORE_RECIPIENT_STATUS Renamed to ANYMAIL_IGNORE_RECIPIENT_STATUS (or just
IGNORE_RECIPIENT_STATUS in the ANYMAIL settings dict).

DJRILL_WEBHOOK_SECRET and DJRILL_WEBHOOK_SECRET_NAME Replaced with HTTP basic auth. See Se-
curing webhooks.

DJRILL_WEBHOOK_SIGNATURE_KEY Use ANYMAIL_MANDRILL_WEBHOOK_KEY instead.

DJRILL_WEBHOOK_URL Often no longer required: Anymail can normally use Django’s HttpRequest.
build_absolute_uri to figure out the complete webhook url that Mandrill called.

If you are experiencing webhook authorization errors, the best solution is to ad-
just your Django SECURE_PROXY_SSL_HEADER, USE_X_FORWARDED_HOST, and/or
USE_X_FORWARDED_PORT settings to work with your proxy server. If that’s not possible, you can set
ANYMAIL_MANDRILL_WEBHOOK_URL to explicitly declare the webhook url.

Changes to EmailMessage attributes

message.send_at If you are using an aware datetime for send_at, it will keep working unchanged with Any-
mail.

If you are using a date (without a time), or a naive datetime, be aware that these now default to Django’s
current_timezone, rather than UTC as in Djrill.

(As with Djrill, it’s best to use an aware datetime that says exactly when you want the message sent.)

message.mandrill_response Anymail normalizes ESP responses, so you don’t have to be familiar with the
format of Mandrill’s JSON. See anymail_status.

The raw ESP response is attached to a sent message as anymail_status.esp_response, so the direct
replacement for message.mandrill_response is:

mandrill_response = message.anymail_status.esp_response.json()

message.template_name Anymail renames this to template_id.

message.merge_vars and message.global_merge_vars Anymail renames these to merge_data and
merge_global_data, respectively.

message.use_template_from and message.use_template_subject With Anymail, set message.
from_email = None or message.subject = None to use the values from the stored template.

message.return_path_domain With Anymail, set envelope_sender instead. You’ll need to pass a valid
email address (not just a domain), but Anymail will use only the domain, and will ignore anything before the @.

Changed in version 2.0.

52 Chapter 1. Documentation

https://docs.djangoproject.com/en/stable/ref/request-response/#django.http.HttpRequest.build_absolute_uri
https://docs.djangoproject.com/en/stable/ref/request-response/#django.http.HttpRequest.build_absolute_uri
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-SECURE_PROXY_SSL_HEADER
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-USE_X_FORWARDED_HOST
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-USE_X_FORWARDED_PORT

Anymail Documentation, Release 2.1

Other Mandrill-specific attributes Djrill allowed nearly all Mandrill API parameters to be set as attributes directly
on an EmailMessage. With Anymail, you should instead set these in the message’s esp_extra dict as described
above.

Although the Djrill style attributes are still supported (for now), Anymail will issue a DeprecationWarning
if you try to use them. These warnings are visible during tests (with Django’s default test runner), and will
explain how to update your code.

You can also use the following git grep expression to find potential problems:

git grep -w \
-e 'async' -e 'auto_html' -e 'auto_text' -e 'from_name' -e 'global_

→˓merge_vars' \
-e 'google_analytics_campaign' -e 'google_analytics_domains' -e

→˓'important' \
-e 'inline_css' -e 'ip_pool' -e 'merge_language' -e 'merge_vars' \
-e 'preserve_recipients' -e 'recipient_metadata' -e 'return_path_domain

→˓' \
-e 'signing_domain' -e 'subaccount' -e 'template_content' -e 'template_

→˓name' \
-e 'tracking_domain' -e 'url_strip_qs' -e 'use_template_from' -e 'use_

→˓template_subject' \
-e 'view_content_link'

Inline images Djrill (incorrectly) used the presence of a Content-ID header to decide whether to treat an image as
inline. Anymail looks for Content-Disposition: inline.

If you were constructing MIMEImage inline image attachments for your Djrill messages, in addition to setting
the Content-ID, you should also add:

image.add_header('Content-Disposition', 'inline')

Or better yet, use Anymail’s new Inline images helper functions to attach your inline images.

Changes to webhooks

Anymail uses HTTP basic auth as a shared secret for validating webhook calls, rather than Djrill’s “secret” query
parameter. See Securing webhooks. (A slight advantage of basic auth over query parameters is that most logging and
analytics systems are aware of the need to keep auth secret.)

Anymail replaces djrill.signals.webhook_event with anymail.signals.tracking for delivery
tracking events, and anymail.signals.inbound for inbound events. Anymail parses and normalizes the event
data passed to the signal receiver: see Tracking sent mail status and Receiving mail.

The equivalent of Djrill’s data parameter is available to your signal receiver as event.esp_event, and for most
events, the equivalent of Djrill’s event_type parameter is event.esp_event['event']. But consider work-
ing with Anymail’s normalized AnymailTrackingEvent and AnymailInboundEvent instead for easy porta-
bility to other ESPs.

1.5.5 Postmark

Anymail integrates with the Postmark transactional email service, using their HTTP email API.

1.5. Supported ESPs 53

https://docs.python.org/3.6/library/exceptions.html#DeprecationWarning
https://postmarkapp.com/
https://postmarkapp.com/developer/api/email-api

Anymail Documentation, Release 2.1

Settings

EMAIL_BACKEND

To use Anymail’s Postmark backend, set:

EMAIL_BACKEND = "anymail.backends.postmark.EmailBackend"

in your settings.py.

POSTMARK_SERVER_TOKEN

Required. A Postmark server token.

ANYMAIL = {
...
"POSTMARK_SERVER_TOKEN": "<your server token>",

}

Anymail will also look for POSTMARK_SERVER_TOKEN at the root of the settings file if neither
ANYMAIL["POSTMARK_SERVER_TOKEN"] nor ANYMAIL_POSTMARK_SERVER_TOKEN is set.

You can override the server token for an individual message in its esp_extra.

POSTMARK_API_URL

The base url for calling the Postmark API.

The default is POSTMARK_API_URL = "https://api.postmarkapp.com/" (It’s unlikely you would need
to change this.)

esp_extra support

To use Postmark features not directly supported by Anymail, you can set a message’s esp_extra to a dict that
will be merged into the json sent to Postmark’s email API.

Example:

message.esp_extra = {
'HypotheticalFuturePostmarkParam': '2022', # merged into send params
'server_token': '<API server token for just this message>',

}

(You can also set "esp_extra" in Anymail’s global send defaults to apply it to all messages.)

Limitations and quirks

Postmark does not support a few tracking and reporting additions offered by other ESPs.

Anymail normally raises an AnymailUnsupportedFeature error when you try to send a message using features
that Postmark doesn’t support You can tell Anymail to suppress these errors and send the messages anyway – see
Unsupported features.

54 Chapter 1. Documentation

https://docs.python.org/3.6/library/stdtypes.html#dict
https://postmarkapp.com/developer/api/email-api

Anymail Documentation, Release 2.1

Single tag Postmark allows a maximum of one tag per message. If your message has two or
more tags, you’ll get an AnymailUnsupportedFeature error—or if you’ve enabled
ANYMAIL_IGNORE_UNSUPPORTED_FEATURES, Anymail will use only the first tag.

No metadata Postmark does not support attaching metadata to messages.

No delayed sending Postmark does not support send_at.

Click-tracking Postmark supports several link-tracking options. Anymail treats track_clicks as Postmark’s
“HtmlAndText” option when True.

If you would prefer Postmark’s “HtmlOnly” or “TextOnly” link-tracking, you could either set that as a Postmark
server-level default (and use message.track_clicks = False to disable tracking for specific mes-
sages), or use something like message.esp_extra = {'TrackLinks': "HtmlOnly"} to specify
a particular option.

No envelope sender overrides Postmark does not support overriding envelope_sender on individual messages.
(You can configure custom return paths for each sending domain in the Postmark control panel.)

Batch sending/merge and ESP templates

Postmark supports ESP stored templates populated with global merge data for all recipients, but does not offer batch
sending with per-recipient merge data. Anymail’s merge_data message attribute is not supported with the Postmark
backend.

To use a Postmark template, set the message’s template_id to the numeric Postmark “TemplateID” and supply the
“TemplateModel” using the merge_global_data message attribute:

message = EmailMessage(
...
subject=None, # use template subject
to=["alice@example.com"] # single recipient...
...multiple to emails would all get the same message
(and would all see each other's emails in the "to" header)

)
message.template_id = 80801 # use this Postmark template
message.merge_global_data = {

'name': "Alice",
'order_no': "12345",
'ship_date': "May 15",
'items': [

{'product': "Widget", 'price': "9.99"},
{'product': "Gadget", 'price': "17.99"},

],
}

Set the EmailMessage’s subject to None to use the subject from your Postmark template, or supply a subject with the
message to override the template value.

See this Postmark blog post on templates for more information.

Status tracking webhooks

If you are using Anymail’s normalized status tracking, set up a webhook in your Postmark account settings, under
Servers > your server name > Settings > Webhooks. The webhook URL is:

https://random:random@yoursite.example.com/anymail/postmark/tracking/

• random:random is an ANYMAIL_WEBHOOK_SECRET shared secret

1.5. Supported ESPs 55

https://postmarkapp.com/developer/user-guide/tracking-links#enabling-link-tracking
https://docs.python.org/3.6/library/constants.html#None
https://postmarkapp.com/blog/special-delivery-postmark-templates
https://account.postmarkapp.com/servers

Anymail Documentation, Release 2.1

• yoursite.example.com is your Django site

Choose all the event types you want to receive. Anymail doesn’t care about the “include messsage content” and “post
only on first open” options; whether to use them is your choice.

If you use multiple Postmark servers, you’ll need to repeat entering the webhook settings for each of them.

Postmark will report these Anymail event_types: rejected, failed, bounced, deferred, delivered, autoresponded,
opened, clicked, complained, unsubscribed, subscribed. (Postmark does not support sent–what it calls “pro-
cessed”–events through webhooks.)

The event’s esp_event field will be a dict of Postmark delivery, bounce, spam-complaint, open-tracking, or click
data.

Inbound webhook

If you want to receive email from Postmark through Anymail’s normalized inbound handling, follow Postmark’s
Inbound Processing guide to configure an inbound server pointing to Anymail’s inbound webhook.

The InboundHookUrl setting will be:

https://random:random@yoursite.example.com/anymail/postmark/inbound/

• random:random is an ANYMAIL_WEBHOOK_SECRET shared secret

• yoursite.example.com is your Django site

Anymail handles the “parse an email” part of Postmark’s instructions for you, but you’ll likely want to work through
the other sections to set up a custom inbound domain, and perhaps configure inbound spam blocking.

1.5.6 SendGrid

Anymail integrates with the SendGrid email service, using their Web API v3.

Changed in version 0.8: Earlier Anymail releases used SendGrid’s v2 API. If you are upgrading, please review the
porting notes.

Important: Troubleshooting: If your SendGrid messages aren’t being delivered as expected, be sure to look for
“drop” events in your SendGrid activity feed.

SendGrid detects certain types of errors only after the send API call appears to succeed, and reports these errors as
drop events.

Settings

EMAIL_BACKEND

To use Anymail’s SendGrid backend, set:

EMAIL_BACKEND = "anymail.backends.sendgrid.EmailBackend"

in your settings.py.

56 Chapter 1. Documentation

https://docs.python.org/3.6/library/stdtypes.html#dict
https://postmarkapp.com/developer/webhooks/delivery-webhook
https://postmarkapp.com/developer/webhooks/bounce-webhook
https://postmarkapp.com/developer/webhooks/spam-complaint-webhook
https://postmarkapp.com/developer/webhooks/open-tracking-webhook
https://postmarkapp.com/developer/webhooks/click-webhook
https://postmarkapp.com/developer/user-guide/inbound
https://sendgrid.com/
https://sendgrid.com/docs/API_Reference/Web_API_v3/Mail/index.html
https://app.sendgrid.com/email_activity?events=drops

Anymail Documentation, Release 2.1

SENDGRID_API_KEY

A SendGrid API key with “Mail Send” permission. (Manage API keys in your SendGrid API key settings.) Required.

ANYMAIL = {
...
"SENDGRID_API_KEY": "<your API key>",

}

Anymail will also look for SENDGRID_API_KEY at the root of the settings file if neither
ANYMAIL["SENDGRID_API_KEY"] nor ANYMAIL_SENDGRID_API_KEY is set.

SENDGRID_GENERATE_MESSAGE_ID

Whether Anymail should generate a Message-ID for messages sent through SendGrid, to facilitate event tracking.

Default True. You can set to False to disable this behavior. See Message-ID quirks below.

SENDGRID_MERGE_FIELD_FORMAT

If you use merge data, set this to a str.format() formatting string that indicates how merge fields are delimited
in your SendGrid templates. For example, if your templates use the -field- hyphen delimiters suggested in some
SendGrid docs, you would set:

ANYMAIL = {
...
"SENDGRID_MERGE_FIELD_FORMAT": "-{}-",

}

The placeholder {} will become the merge field name. If you need to include a literal brace character, double it up.
(For example, Handlebars-style {{field}} delimiters would take the format string "{{{{{}}}}}".)

The default None requires you include the delimiters directly in your merge_data keys. You can also override this
setting for individual messages. See the notes on SendGrid templates and merge below.

SENDGRID_API_URL

The base url for calling the SendGrid API.

The default is SENDGRID_API_URL = "https://api.sendgrid.com/v3/" (It’s unlikely you would need
to change this.)

esp_extra support

To use SendGrid features not directly supported by Anymail, you can set a message’s esp_extra to a dict of
parameters for SendGrid’s v3 Mail Send API. Your esp_extra dict will be deeply merged into the parameters
Anymail has constructed for the send, with esp_extra having precedence in conflicts.

Example:

1.5. Supported ESPs 57

https://app.sendgrid.com/settings/api_keys
https://docs.python.org/3.6/library/stdtypes.html#str.format
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#dict
https://sendgrid.com/docs/API_Reference/Web_API_v3/Mail/index.html#-Request-Body-Parameters

Anymail Documentation, Release 2.1

message.open_tracking = True
message.esp_extra = {

"asm": { # SendGrid subscription management
"group_id": 1,
"groups_to_display": [1, 2, 3],

},
"tracking_settings": {

"open_tracking": {
Anymail will automatically set `"enable": True` here,
based on message.open_tracking.
"substitution_tag": "%%OPEN_TRACKING_PIXEL%%",

},
},

}

(You can also set "esp_extra" in Anymail’s global send defaults to apply it to all messages.)

Limitations and quirks

Message-ID SendGrid does not return any sort of unique id from its send API call. Knowing a sent message’s ID can
be important for later queries about the message’s status.

To work around this, Anymail by default generates a new Message-ID for each outgoing message, provides it to
SendGrid, and includes it in the anymail_status attribute after you send the message.

In later SendGrid API calls, you can match that Message-ID to SendGrid’s smtp-id event field. (Anymail
uses an additional workaround to ensure smtp-id is included in all SendGrid events, even those that aren’t
documented to include it.)

Anymail will use the domain of the message’s from_email to generate the Message-ID. (If this isn’t desired,
you can supply your own Message-ID in the message’s extra_headers.)

To disable all of these Message-ID workarounds, set ANYMAIL_SENDGRID_GENERATE_MESSAGE_ID to
False in your settings.

Single Reply-To SendGrid’s v3 API only supports a single Reply-To address (and blocks a workaround that was
possible with the v2 API).

If your message has multiple reply addresses, you’ll get an AnymailUnsupportedFeature error—or if
you’ve enabled ANYMAIL_IGNORE_UNSUPPORTED_FEATURES, Anymail will use only the first one.

Invalid Addresses SendGrid will accept and send just about anything as a message’s from_email. (And email
protocols are actually OK with that.)

(Tested March, 2016)

No envelope sender overrides SendGrid does not support overriding envelope_sender on individual messages.

Batch sending/merge and ESP templates

SendGrid offers both ESP stored templates and batch sending with per-recipient merge data.

You can use a SendGrid stored template by setting a message’s template_id to the template’s unique id. Alterna-
tively, you can refer to merge fields directly in an EmailMessage’s subject and body—the message itself is used as an
on-the-fly template.

In either case, supply the merge data values with Anymail’s normalized merge_data and merge_global_data
message attributes.

58 Chapter 1. Documentation

Anymail Documentation, Release 2.1

message = EmailMessage(
...
omit subject and body (or set to None) to use template content
to=["alice@example.com", "Bob <bob@example.com>"]

)
message.template_id = "5997fcf6-2b9f-484d-acd5-7e9a99f0dc1f" # SendGrid id
message.merge_data = {

'alice@example.com': {'name': "Alice", 'order_no': "12345"},
'bob@example.com': {'name': "Bob", 'order_no': "54321"},

}
message.merge_global_data = {

'ship_date': "May 15",
}
message.esp_extra = {

Tell Anymail this SendGrid template uses "-field-" to refer to merge
→˓fields.

(We could also just set SENDGRID_MERGE_FIELD_FORMAT in our ANYMAIL
→˓settings.)

'merge_field_format': "-{}-"
}

SendGrid doesn’t have a pre-defined merge field syntax, so you must tell Anymail how substitution fields are delimited
in your templates. There are three ways you can do this:

• Set 'merge_field_format' in the message’s esp_extra to a python str.format() string, as shown
in the example above. (This applies only to that particular EmailMessage.)

• Or set SENDGRID_MERGE_FIELD_FORMAT in your Anymail settings. This is usually the best approach,
and will apply to all messages sent through SendGrid. (You can still use esp_extra to override for individual
messages.)

• Or include the field delimiters directly in all your merge_data and merge_global_data keys. E.g.:
{'-name-': "Alice", '-order_no-': "12345"}. (This can be error-prone, and difficult to
move to other ESPs.)

When you supply per-recipient merge_data, Anymail automatically changes how it communicates the “to” list to
SendGrid, so that so that each recipient sees only their own email address. (Anymail creates a separate “personaliza-
tion” for each recipient in the “to” list; any cc’s or bcc’s will be duplicated for every to-recipient.)

SendGrid templates allow you to mix your EmailMessage’s subject and body with the template subject and body
(by using <%subject%> and <%body%> in your SendGrid template definition where you want the message-specific
versions to appear). If you don’t want to supply any additional subject or body content from your Django app, set those
EmailMessage attributes to empty strings or None.

See the SendGrid’s template overview and transactional template docs for more information.

Status tracking webhooks

If you are using Anymail’s normalized status tracking, enter the url in your SendGrid mail settings, under “Event
Notification”:

https://random:random@yoursite.example.com/anymail/sendgrid/tracking/

• random:random is an ANYMAIL_WEBHOOK_SECRET shared secret

• yoursite.example.com is your Django site

Be sure to check the boxes in the SendGrid settings for the event types you want to receive.

1.5. Supported ESPs 59

https://docs.python.org/3.6/library/stdtypes.html#str.format
https://docs.python.org/3.6/library/constants.html#None
https://sendgrid.com/docs/User_Guide/Transactional_Templates/index.html
https://sendgrid.com/docs/API_Reference/Web_API_v3/Transactional_Templates/smtpapi.html
https://app.sendgrid.com/settings/mail_settings

Anymail Documentation, Release 2.1

SendGrid will report these Anymail event_types: queued, rejected, bounced, deferred, delivered, opened, clicked,
complained, unsubscribed, subscribed.

The event’s esp_event field will be a dict of Sendgrid event fields, for a single event. (Although SendGrid calls
webhooks with batches of events, Anymail will invoke your signal receiver separately for each event in the batch.)

Inbound webhook

If you want to receive email from SendGrid through Anymail’s normalized inbound handling, follow SendGrid’s
Inbound Parse Webhook guide to set up Anymail’s inbound webhook.

The Destination URL setting will be:

https://random:random@yoursite.example.com/anymail/sendgrid/inbound/

• random:random is an ANYMAIL_WEBHOOK_SECRET shared secret

• yoursite.example.com is your Django site

Be sure the URL has a trailing slash. (SendGrid’s inbound processing won’t follow Django’s APPEND_SLASH redi-
rect.)

If you want to use Anymail’s normalized spam_detected and spam_score attributes, be sure to enable the
“Check incoming emails for spam” checkbox.

You have a choice for SendGrid’s “POST the raw, full MIME message” checkbox. Anymail will handle either option
(and you can change it at any time). Enabling raw MIME will give the most accurate representation of any received
email (including complex forms like multi-message mailing list digests). But disabling it may use less memory while
processing messages with many large attachments.

Upgrading to SendGrid’s v3 API

Anymail v0.8 switched to SendGrid’s preferred v3 send API. (Earlier Anymail releases used their v2 API.)

For many Anymail projects, this change will be entirely transparent. (Anymail’s whole reason for existence is ab-
stracting ESP APIs, so that your own code doesn’t need to worry about the details.)

There are three cases where SendGrid has changed features that would require updates to your code:

1. If you are using SendGrid’s username/password auth (your settings include SENDGRID_USERNAME and
SENDGRID_PASSWORD), you must switch to an API key. See SENDGRID_API_KEY .

(If you are already using a SendGrid API key with v2, it should work just fine with v3.)

2. If you are using Anymail’s esp_extra attribute to supply API-specific parameters, the format has changed.

Search your code for “esp_extra” (e.g., git grep esp_extra) to determine whether this affects you. (Any-
mail’s "merge_field_format" is unchanged, so if that’s the only thing you have in esp_extra, no changes
are needed.)

The new API format is considerably simpler and more logical. See esp_extra support below for examples of the
new format and a link to relevant SendGrid docs.

Anymail will raise an error if it detects an attempt to use the v2-only "x-smtpapi" settings in esp_extra when
sending.

3. If you send messages with multiple Reply-To addresses, SendGrid no longer supports this. (Multiple reply
emails in a single message are not common.)

Anymail will raise an error if you attempt to send a message with multiple Reply-To emails. (You can suppress
the error with ANYMAIL_IGNORE_UNSUPPORTED_FEATURES, which will ignore all but the first reply ad-
dress.)

60 Chapter 1. Documentation

https://docs.python.org/3.6/library/stdtypes.html#dict
https://sendgrid.com/docs/API_Reference/Webhooks/event.html
https://sendgrid.com/docs/Classroom/Basics/Inbound_Parse_Webhook/setting_up_the_inbound_parse_webhook.html
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-APPEND_SLASH

Anymail Documentation, Release 2.1

As an alternative, Anymail (for the time being) still includes a copy of the SendGrid v2 backend. See Legacy v2 API
support below if you’d prefer to stay on the older SendGrid API.

Legacy v2 API support

Changed in version 0.8.

Anymail v0.8 switched to SendGrid’s v3 Web API in its primary SendGrid email backend. SendGrid encourages all
users to migrate to their v3 API.

For Anymail users who still need it, a legacy backend that calls SendGrid’s earlier Web API v2 Mail Send remains
available. Be aware that v2 support is considered deprecated and may be removed in a future Anymail release.

To use Anymail’s SendGrid v2 backend, edit your settings.py:

EMAIL_BACKEND = "anymail.backends.sendgrid_v2.EmailBackend"
ANYMAIL = {

"SENDGRID_API_KEY": "<your API key>",
}

The same SENDGRID_API_KEY will work with either Anymail’s v2 or v3 SendGrid backend.

Nearly all of the documentation above for Anymail’s v3 SendGrid backend also applies to the v2 backend, with the
following changes:

Username/password auth (SendGrid v2 only)

SendGrid v2 allows a username/password instead of an API key (though SendGrid encourages API keys for all new
installations). If you must use username/password auth, set:

EMAIL_BACKEND = "anymail.backends.sendgrid_v2.EmailBackend"
ANYMAIL = {

"SENDGRID_USERNAME": "<sendgrid credential with Mail permission>",
"SENDGRID_PASSWORD": "<password for that credential>",
And leave out "SENDGRID_API_KEY"

}

This is not the username/password that you use to log into SendGrid’s dashboard. Create credentials specifically for
sending mail in the SendGrid credentials settings.

Either username/password or SENDGRID_API_KEY are required (but not both).

Anymail will also look for SENDGRID_USERNAME and SENDGRID_PASSWORD at the root of the settings file if
neither ANYMAIL["SENDGRID_USERNAME"] nor ANYMAIL_SENDGRID_USERNAME is set.

Duplicate attachment filenames (SendGrid v2 limitation)

Anymail is not capable of communicating multiple attachments with the same filename to the SendGrid v2 API. (This
also applies to multiple attachments with no filename, though not to inline images.)

If you are sending multiple attachments on a single message, make sure each one has a unique, non-empty filename.

1.5. Supported ESPs 61

https://sendgrid.com/docs/Classroom/Send/v3_Mail_Send/how_to_migrate_from_v2_to_v3_mail_send.html
https://sendgrid.com/docs/API_Reference/Web_API/mail.html
https://app.sendgrid.com/settings/credentials

Anymail Documentation, Release 2.1

Message bodies with ESP templates (SendGrid v2 quirk)

Anymail’s SendGrid v2 backend will convert empty text and HTML bodies to single spaces whenever template_id
is set, to ensure the plaintext and HTML from your template are present in your outgoing email. This works around a
limitation in SendGrid’s template rendering.

Multiple Reply-To addresses (SendGrid v2 only)

Unlike SendGrid’s v3 API, Anymail is able to support multiple Reply-To addresses with their v2 API.

esp_extra with SendGrid v2

Anymail’s esp_extra attribute is merged directly with the API parameters, so the format varies between SendGrid’s
v2 and v3 APIs. With the v2 API, most interesting settings appear beneath 'x-smtpapi'. Example:

message.esp_extra = {
'x-smtpapi': { # for SendGrid v2 API

"asm_group": 1, # Assign SendGrid unsubscribe group for this message
"asm_groups_to_display": [1, 2, 3],
"filters": {

"subscriptiontrack": { # Insert SendGrid subscription
→˓management links

"settings": {
"text/html": "If you would like to unsubscribe <% click

→˓here %>.",
"text/plain": "If you would like to unsubscribe click

→˓here: <% %>.",
"enable": 1

}
}

}
}

}

The value of esp_extra should be a dict of parameters for SendGrid’s v2 mail.send API. Any keys in the dict
will override Anymail’s normal values for that parameter, except that 'x-smtpapi' will be merged.

1.5.7 SendinBlue

Anymail integrates with the SendinBlue email service, using their API v3. SendinBlue’s transactional API does not
support some basic email features, such as inline images. Be sure to review the limitations below.

Important: Troubleshooting: If your SendinBlue messages aren’t being delivered as expected, be sure to look for
events in your SendinBlue logs.

SendinBlue detects certain types of errors only after the send API call reports the message as “queued.” These errors
appear in the logging dashboard.

62 Chapter 1. Documentation

https://sendgrid.com/docs/API_Reference/Web_API_v3/Transactional_Templates/smtpapi.html#-Text-or-HTML-Templates
https://docs.python.org/3.6/library/stdtypes.html#dict
https://sendgrid.com/docs/API_Reference/Web_API/mail.html#-send
https://www.sendinblue.com/
https://developers.sendinblue.com/docs
https://app-smtp.sendinblue.com/log

Anymail Documentation, Release 2.1

Settings

EMAIL_BACKEND

To use Anymail’s SendinBlue backend, set:

EMAIL_BACKEND = "anymail.backends.sendinblue.EmailBackend"

in your settings.py.

SENDINBLUE_API_KEY

The API key can be retrieved from your SendinBlue SMTP & API settings. Make sure the version column indicates
“v3.” (v2 keys don’t work with Anymail. If you don’t see a v3 key listed, use “Create a New API Key”.) Required.

ANYMAIL = {
...
"SENDINBLUE_API_KEY": "<your v3 API key>",

}

Anymail will also look for SENDINBLUE_API_KEY at the root of the settings file if neither
ANYMAIL["SENDINBLUE_API_KEY"] nor ANYMAIL_SENDINBLUE_API_KEY is set.

SENDINBLUE_API_URL

The base url for calling the SendinBlue API.

The default is SENDINBLUE_API_URL = "https://api.sendinblue.com/v3/" (It’s unlikely you
would need to change this.)

esp_extra support

To use SendinBlue features not directly supported by Anymail, you can set a message’s esp_extra to a dict that
will be merged into the json sent to SendinBlue’s smtp/email API.

Example:

message.esp_extra = {
'hypotheticalFutureSendinBlueParam': '2022', # merged into send params

}

(You can also set "esp_extra" in Anymail’s global send defaults to apply it to all messages.)

Limitations and quirks

SendinBlue’s v3 API has several limitations. In most cases below, Anymail will raise an
AnymailUnsupportedFeature error if you try to send a message using missing features. You can over-
ride this by enabling the ANYMAIL_IGNORE_UNSUPPORTED_FEATURES setting, and Anymail will try to limit
the API request to features SendinBlue can handle.

HTML body required SendinBlue’s API returns an error if you attempt to send a message with only a plain-text
body. Be sure to include HTML content for your messages.

1.5. Supported ESPs 63

https://account.sendinblue.com/advanced/api
https://docs.python.org/3.6/library/stdtypes.html#dict
https://developers.sendinblue.com/v3.0/reference#sendtransacemail

Anymail Documentation, Release 2.1

(SendinBlue does allow HTML without a plain-text body. This is generally not recommended, though, as some
email systems treat HTML-only content as a spam signal.)

Inline images SendinBlue’s v3 API doesn’t support inline images, at all. (Confirmed with SendinBlue support Feb
2018.)

If you are ignoring unsupported features, Anymail will try to send inline images as ordinary image attachments.

Attachment names must be filenames with recognized extensions SendinBlue determines attachment content type
by assuming the attachment’s name is a filename, and examining that filename’s extension (e.g., “.jpg”).

Trying to send an attachment without a name, or where the name does not end in a supported filename extension,
will result in a SendinBlue API error. Anymail has no way to communicate an attachment’s desired content-type
to the SendinBlue API if the name is not set correctly.

Additional template limitations If you are sending using a SendinBlue template, their API doesn’t allow display
names in recipient or reply-to emails, and doesn’t support overriding the template’s from_email, subject, or
body. See the templates section below.

Single Reply-To SendinBlue’s v3 API only supports a single Reply-To address.

If you are ignoring unsupported features and have multiple reply addresses, Anymail will use only the first one.

Single tag SendinBlue supports a single message tag, which can be used for filtering in their dashboard statistics
and logs panels, and is available in tracking webhooks. Anymail will pass the first of a message’s tags to
SendinBlue, using their X-Mailin-tag email header.

Trying to send a message with more than one tag will result in an error unless you are ignoring unsupported
features.

Metadata Anymail passes metadata to SendinBlue as a JSON-encoded string using their X-Mailin-custom
email header. The metadata is available in tracking webhooks.

No delayed sending SendinBlue does not support send_at.

No click-tracking or open-tracking options SendinBlue does not provide a way to control open or click tracking
for individual messages. Anymail’s track_clicks and track_opens settings are unsupported.

No envelope sender overrides SendinBlue does not support overriding envelope_sender on individual mes-
sages.

Batch sending/merge and ESP templates

SendinBlue supports ESP stored templates populated with global merge data for all recipients, but does not offer
batch sending with per-recipient merge data. Anymail’s merge_data message attribute is not supported with the
SendinBlue backend.

To use a SendinBlue template, set the message’s template_id to the numeric SendinBlue template ID, and supply
substitution attributes using the messages’s merge_global_data:

message = EmailMessage(
subject=None, # required for SendinBlue templates
body=None, # required for SendinBlue templates
to=["alice@example.com"] # single recipient...
...multiple to emails would all get the same message
(and would all see each other's emails in the "to" header)

)
message.from_email = None # required for SendinBlue templates
message.template_id = 3 # use this SendinBlue template
message.merge_global_data = {

(continues on next page)

64 Chapter 1. Documentation

Anymail Documentation, Release 2.1

(continued from previous page)

'name': "Alice",
'order_no': "12345",
'ship_date': "May 15",

}

Within your SendinBlue template body and subject, you can refer to merge variables using %-delimited names, e.g.,
%order_no% or %ship_date% from the example above.

Note that SendinBlue’s API does not permit overriding a template’s subject, body, or from_email. You must set them
to None as shown above, or Anymail will raise an AnymailUnsupportedFeature error (if you are not ignoring
unsupported features).

Also, SendinBlue’s API does not permit display names in recipient or reply-to emails when sending with a template.
Code like to=["Alice <alice@example.com>"] will result in an unsupported feature error. (SendinBlue
supports display names only in non-template sends.)

Status tracking webhooks

If you are using Anymail’s normalized status tracking, add the url at SendinBlue’s site under Transactional > Settings
> Webhook.

The “URL to call” is:

https://random:random@yoursite.example.com/anymail/sendinblue/
tracking/

• random:random is an ANYMAIL_WEBHOOK_SECRET shared secret

• yoursite.example.com is your Django site

Be sure to select the checkboxes for all the event types you want to receive. (Also make sure you are in the “Transac-
tional” section of their site; SendinBlue has a separate set of “Campaign” webhooks, which don’t apply to messages
sent through Anymail.)

If you are interested in tracking opens, note that SendinBlue has both a “First opening” and an “Opened” event type,
and will generate both the first time a message is opened. Anymail normalizes both of these events to “opened.” To
avoid double counting, you should only enable one of the two.

SendinBlue will report these Anymail event_types: queued, rejected, bounced, deferred, delivered, opened (see
note above), clicked, complained, unsubscribed, subscribed (though this should never occur for transactional email).

For events that occur in rapid succession, SendinBlue frequently delivers them out of order. For example, it’s not
uncommon to receive a “delivered” event before the corresponding “queued.”

The event’s esp_event field will be a dict of raw webhook data received from SendinBlue.

Inbound webhook

SendinBlue does not support inbound email handling.

1.5.8 SparkPost

Anymail integrates with the SparkPost email service, using their python-sparkpost API client.

1.5. Supported ESPs 65

https://docs.python.org/3.6/library/constants.html#None
https://app-smtp.sendinblue.com/webhook
https://app-smtp.sendinblue.com/webhook
https://docs.python.org/3.6/library/stdtypes.html#dict
https://www.sparkpost.com/
https://pypi.python.org/pypi/python-sparkpost

Anymail Documentation, Release 2.1

Installation

You must ensure the sparkpost package is installed to use Anymail’s SparkPost backend. Either include the “sparkpost”
option when you install Anymail:

$ pip install django-anymail[sparkpost]

or separately run pip install sparkpost.

Settings

EMAIL_BACKEND

To use Anymail’s SparkPost backend, set:

EMAIL_BACKEND = "anymail.backends.sparkpost.EmailBackend"

in your settings.py.

SPARKPOST_API_KEY

A SparkPost API key with at least the “Transmissions: Read/Write” permission. (Manage API keys in your SparkPost
account API keys.)

This setting is optional; if not provided, the SparkPost API client will attempt to read your API key from the
SPARKPOST_API_KEY environment variable.

ANYMAIL = {
...
"SPARKPOST_API_KEY": "<your API key>",

}

Anymail will also look for SPARKPOST_API_KEY at the root of the settings file if neither
ANYMAIL["SPARKPOST_API_KEY"] nor ANYMAIL_SPARKPOST_API_KEY is set.

SPARKPOST_API_URL

The SparkPost API Endpoint to use. This setting is optional; if not provided, Anymail will use the python-sparkpost
client default endpoint ("https://api.sparkpost.com/api/v1").

Set this to use a SparkPost EU account, or to work with any other API endpoint including SparkPost Enterprise API
and SparkPost Labs.

ANYMAIL = {
...
"SPARKPOST_API_URL": "https://api.eu.sparkpost.com/api/v1", # use

→˓SparkPost EU
}

You must specify the full, versioned API endpoint as shown above (not just the base_uri). This setting only affects
Anymail’s calls to SparkPost, and will not apply to other code using python-sparkpost.

66 Chapter 1. Documentation

https://pypi.python.org/pypi/sparkpost
https://app.sparkpost.com/account/credentials
https://app.sparkpost.com/account/credentials
https://developers.sparkpost.com/api/index.html#header-api-endpoints
https://pypi.python.org/pypi/python-sparkpost
https://pypi.python.org/pypi/python-sparkpost

Anymail Documentation, Release 2.1

esp_extra support

To use SparkPost features not directly supported by Anymail, you can set a message’s esp_extra to a dict of
parameters for python-sparkpost’s transmissions.send method. Any keys in your esp_extra dict will override
Anymail’s normal values for that parameter.

Example:

message.esp_extra = {
'transactional': True, # treat as transactional for unsubscribe and

→˓suppression
'description': "Marketing test-run for new templates",
'use_draft_template': True,

}

(You can also set "esp_extra" in Anymail’s global send defaults to apply it to all messages.)

Limitations and quirks

Anymail’s ‘message_id‘ is SparkPost’s ‘transmission_id‘ The message_id Anymail sets on a message’s
anymail_status and in normalized webhook AnymailTrackingEvent data is actually what Spark-
Post calls “transmission_id”.

Like Anymail’s message_id for other ESPs, SparkPost’s transmission_id (together with the recipient email ad-
dress), uniquely identifies a particular message instance in tracking events.

(The transmission_id is the only unique identifier available when you send your message. SparkPost also has
something called “message_id”, but that doesn’t get assigned until after the send API call has completed.)

If you are working exclusively with Anymail’s normalized message status and webhook events, the distinction
won’t matter: you can consistently use Anymail’s message_id. But if you are also working with raw web-
hook esp_event data or SparkPost’s events API, be sure to think “transmission_id” wherever you’re speaking to
SparkPost.

Single tag Anymail uses SparkPost’s “campaign_id” to implement message tagging. Spark-
Post only allows a single campaign_id per message. If your message has two or
more tags, you’ll get an AnymailUnsupportedFeature error—or if you’ve enabled
ANYMAIL_IGNORE_UNSUPPORTED_FEATURES, Anymail will use only the first tag.

(SparkPost’s “recipient tags” are not available for tagging messages. They’re associated with individual ad-
dresses in stored recipient lists.)

Envelope sender may use domain only Anymail’s envelope_sender is used to populate SparkPost’s
'return_path' parameter. Anymail supplies the full email address, but depending on your Spark-
Post configuration, SparkPost may use only the domain portion and substitute its own encoded mailbox before
the @.

Batch sending/merge and ESP templates

SparkPost offers both ESP stored templates and batch sending with per-recipient merge data.

You can use a SparkPost stored template by setting a message’s template_id to the template’s unique id. (When
using a stored template, SparkPost prohibits setting the EmailMessage’s subject, text body, or html body.)

Alternatively, you can refer to merge fields directly in an EmailMessage’s subject, body, and other fields—the message
itself is used as an on-the-fly template.

1.5. Supported ESPs 67

https://docs.python.org/3.6/library/stdtypes.html#dict
https://python-sparkpost.readthedocs.io/en/latest/api/transmissions.html#sparkpost.transmissions.Transmissions.send

Anymail Documentation, Release 2.1

In either case, supply the merge data values with Anymail’s normalized merge_data and merge_global_data
message attributes.

message = EmailMessage(
...
to=["alice@example.com", "Bob <bob@example.com>"]

)
message.template_id = "11806290401558530" # SparkPost id
message.merge_data = {

'alice@example.com': {'name': "Alice", 'order_no': "12345"},
'bob@example.com': {'name': "Bob", 'order_no': "54321"},

}
message.merge_global_data = {

'ship_date': "May 15",
Can use SparkPost's special "dynamic" keys for nested substitutions

→˓(see notes):
'dynamic_html': {

'status_html': "
→˓Status",

},
'dynamic_plain': {

'status_plain': "Status: https://example.com/order/{{order_no}}",
},

}

See SparkPost’s substitutions reference for more information on templates and batch send with SparkPost. If you need
the special “dynamic” keys for nested substitutions, provide them in Anymail’s merge_global_data as shown in
the example above. And if you want use_draft_template behavior, specify that in esp_extra.

Status tracking webhooks

If you are using Anymail’s normalized status tracking, set up the webhook in your SparkPost account settings under
“Webhooks”:

• Target URL: https://yoursite.example.com/anymail/sparkpost/tracking/

• Authentication: choose “Basic Auth.” For username and password enter the two halves of the random:random
shared secret you created for your ANYMAIL_WEBHOOK_SECRET Django setting. (Anymail doesn’t support
OAuth webhook auth.)

• Events: click “Select” and then clear the checkbox for “Relay Events” category (which is for inbound email).
You can leave all the other categories of events checked, or disable any you aren’t interested in tracking.

SparkPost will report these Anymail event_types: queued, rejected, bounced, deferred, delivered, opened, clicked,
complained, unsubscribed, subscribed.

The event’s esp_event field will be a single, raw SparkPost event. (Although SparkPost calls webhooks with
batches of events, Anymail will invoke your signal receiver separately for each event in the batch.) The esp_event is
the raw, wrapped json event structure as provided by SparkPost: {'msys': {'<event_category>': {..
.<actual event data>...}}}.

Inbound webhook

If you want to receive email from SparkPost through Anymail’s normalized inbound handling, follow SparkPost’s
Enabling Inbound Email Relaying guide to set up Anymail’s inbound webhook.

The target parameter for the Relay Webhook will be:

68 Chapter 1. Documentation

https://developers.sparkpost.com/api/substitutions-reference
https://developers.sparkpost.com/api/substitutions-reference#header-links-and-substitution-expressions-within-substitution-values
https://app.sparkpost.com/account/webhooks
https://app.sparkpost.com/account/webhooks
https://support.sparkpost.com/customer/portal/articles/1976204-webhook-event-reference
https://support.sparkpost.com/customer/en/portal/articles/2311698-comparing-webhook-and-message-event-data
https://www.sparkpost.com/docs/tech-resources/inbound-email-relay-webhook/

Anymail Documentation, Release 2.1

https://random:random@yoursite.example.com/anymail/sparkpost/inbound/

• random:random is an ANYMAIL_WEBHOOK_SECRET shared secret

• yoursite.example.com is your Django site

1.5.9 Anymail feature support

The table below summarizes the Anymail features supported for each ESP.

Email
Service
Provider

Amazon
SES

Mailgun Mailjet Mandrill Post-
mark

Send-
Grid

Sendin-
Blue

Spark-
Post

Anymail send options

envelope_senderYes Domain
only

Yes Domain
only

No No No Yes

metadata Yes Yes Yes Yes No Yes Yes Yes
send_at No Yes No Yes No Yes No Yes
tags Yes Yes Max 1 tag Yes Max 1 tag Yes Max 1 tag Max 1 tag
track_clicksNo Yes Yes Yes Yes Yes No Yes
track_opensNo Yes Yes Yes Yes Yes No Yes

Batch sending/merge and ESP templates

template_idYes No Yes Yes Yes Yes Yes Yes
merge_dataYes Yes Yes Yes No Yes No Yes
merge_global_dataYes (emu-

lated)
Yes Yes Yes Yes Yes Yes

Status and event tracking

anymail_statusYes Yes Yes Yes Yes Yes Yes Yes
AnymailTrackingEvent
from
web-
hooks

Yes Yes Yes Yes Yes Yes Yes Yes

Inbound handling

AnymailInboundEvent
from
web-
hooks

Yes Yes Yes Yes Yes Yes No Yes

Trying to choose an ESP? Please don’t start with this table. It’s far more important to consider things like an ESP’s
deliverability stats, latency, uptime, and support for developers. The number of extra features an ESP offers is almost
meaningless. (And even specific features don’t matter if you don’t plan to use them.)

1.5.10 Other ESPs

Don’t see your favorite ESP here? Anymail is designed to be extensible. You can suggest that Anymail add an ESP,
or even contribute your own implementation to Anymail. See Contributing.

1.5. Supported ESPs 69

Anymail Documentation, Release 2.1

1.6 Tips, tricks, and advanced usage

Some suggestions and recipes for getting things done with Anymail:

1.6.1 Handling transient errors

Applications using Anymail need to be prepared to deal with connectivity issues and other transient errors from your
ESP’s API (as with any networked API).

Because Django doesn’t have a built-in way to say “try this again in a few moments,” Anymail doesn’t have its own
logic to retry network errors. The best way to handle transient ESP errors depends on your Django project:

• If you already use something like celery or Django channels for background task scheduling, that’s usually the
best choice for handling Anymail sends. Queue a task for every send, and wait to mark the task complete until
the send succeeds (or repeatedly fails, according to whatever logic makes sense for your app).

• Another option is the Pinax django-mailer package, which queues and automatically retries failed sends for any
Django EmailBackend, including Anymail. django-mailer maintains its send queue in your regular Django DB,
which is a simple way to get started but may not scale well for very large volumes of outbound email.

In addition to handling connectivity issues, either of these approaches also has the advantage of moving email sending
to a background thread. This is a best practice for sending email from Django, as it allows your web views to respond
faster.

1.6.2 Mixing email backends

Since you are replacing Django’s global EMAIL_BACKEND, by default Anymail will handle all outgoing mail, sending
everything through your ESP.

You can use Django mail’s optional connection argument to send some mail through your ESP and others through
a different system.

This could be useful, for example, to deliver customer emails with the ESP, but send admin emails directly through an
SMTP server:

from django.core.mail import send_mail, get_connection

send_mail connection defaults to the settings EMAIL_BACKEND, which
we've set to Anymail's Mailgun EmailBackend. This will be sent using Mailgun:
send_mail("Thanks", "We sent your order", "sales@example.com", ["customer@example.com
→˓"])

Get a connection to an SMTP backend, and send using that instead:
smtp_backend = get_connection('django.core.mail.backends.smtp.EmailBackend')
send_mail("Uh-Oh", "Need your attention", "admin@example.com", ["alert@example.com"],

connection=smtp_backend)

You can even use multiple Anymail backends in the same app:
sendgrid_backend = get_connection('anymail.backends.sendgrid.EmailBackend')
send_mail("Password reset", "Here you go", "noreply@example.com", ["user@example.com
→˓"],

connection=sendgrid_backend)

You can override settings.py settings with kwargs to get_connection.
This example supplies credentials for a different Mailgun sub-acccount:
alt_mailgun_backend = get_connection('anymail.backends.mailgun.EmailBackend',

(continues on next page)

70 Chapter 1. Documentation

https://pypi.python.org/pypi/celery
https://pypi.python.org/pypi/channels
https://pypi.python.org/pypi/django-mailer
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_BACKEND
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.get_connection

Anymail Documentation, Release 2.1

(continued from previous page)

api_key=MAILGUN_API_KEY_FOR_MARKETING)
send_mail("Here's that info", "you wanted", "info@marketing.example.com", [
→˓"prospect@example.org"],

connection=alt_mailgun_backend)

You can supply a different connection to Django’s send_mail() and send_mass_mail() helpers, and in the
constructor for an EmailMessage or EmailMultiAlternatives.

(See the django.utils.log.AdminEmailHandler docs for more information on Django’s admin error log-
ging.)

You could expand on this concept and create your own EmailBackend that dynamically switches between other Any-
mail backends—based on properties of the message, or other criteria you set. For example, this gist shows an Email-
Backend that checks ESPs’ status-page APIs, and automatically falls back to a different ESP when the first one isn’t
working.

1.6.3 Using Django templates for email

ESP’s templating languages and merge capabilities are generally not compatible with each other, which can make it
hard to move email templates between them.

But since you’re working in Django, you already have access to the extremely-full-featured Django templating
system. You don’t even have to use Django’s template syntax: it supports other template languages (like Jinja2).

You’re probably already using Django’s templating system for your HTML pages, so it can be an easy decision to use
it for your email, too.

To compose email using Django templates, you can use Django’s render_to_string() template shortcut to
build the body and html.

Example that builds an email from the templates message_subject.txt, message_body.txt and
message_body.html:

from django.core.mail import EmailMultiAlternatives
from django.template import Context
from django.template.loader import render_to_string

merge_data = {
'ORDERNO': "12345", 'TRACKINGNO': "1Z987"

}

plaintext_context = Context(autoescape=False) # HTML escaping not appropriate in
→˓plaintext
subject = render_to_string("message_subject.txt", merge_data, plaintext_context)
text_body = render_to_string("message_body.txt", merge_data, plaintext_context)
html_body = render_to_string("message_body.html", merge_data)

msg = EmailMultiAlternatives(subject=subject, from_email="store@example.com",
to=["customer@example.com"], body=text_body)

msg.attach_alternative(html_body, "text/html")
msg.send()

Helpful add-ons

These (third-party) packages can be helpful for building your email in Django:

1.6. Tips, tricks, and advanced usage 71

https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.send_mail
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.send_mass_mail
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage
https://docs.djangoproject.com/en/stable/topics/logging/#django.utils.log.AdminEmailHandler
https://gist.github.com/tgehrs/58ae571b6db64225c317bf83c06ec312
https://docs.djangoproject.com/en/stable/topics/templates/#module-django.template
https://docs.djangoproject.com/en/stable/topics/templates/#module-django.template

Anymail Documentation, Release 2.1

• django-templated-mail, django-mail-templated, or django-mail-templated-simple for building messages from
sets of Django templates.

• premailer for inlining css before sending

• BeautifulSoup, lxml, or html2text for auto-generating plaintext from your html

1.6.4 Securing webhooks

If not used carefully, webhooks can create security vulnerabilities in your Django application.

At minimum, you should use https and a shared authentication secret for your Anymail webhooks. (Really, for any
webhooks.)

Does this really matter?

Short answer: yes!

Do you allow unauthorized access to your APIs? Would you want someone eavesdropping on API calls? Of course
not. Well, a webhook is just another API.

Think about the data your ESP sends and what your app does with it. If your webhooks aren’t secured, an attacker
could. . .

• accumulate a list of your customers’ email addresses

• fake bounces and spam reports, so you block valid user emails

• see the full contents of email from your users

• convincingly forge incoming mail, tricking your app into publishing spam or acting on falsified commands

• overwhelm your DB with garbage data (do you store tracking info? incoming attachments?)

. . . or worse. Why take a chance?

Use https

For security, your Django site must use https. The webhook URLs you give your ESP need to start with https (not
http).

Without https, the data your ESP sends your webhooks is exposed in transit. This can include your customers’ email
addresses, the contents of messages you receive through your ESP, the shared secret used to authorize calls to your
webhooks (described in the next section), and other data you’d probably like to keep private.

Configuring https is beyond the scope of Anymail, but there are many good tutorials on the web. If you’ve previously
dismissed https as too expensive or too complicated, please take another look. Free https certificates are available from
Let’s Encrypt, and many hosting providers now offer easy https configuration using Let’s Encrypt or their own no-cost
option.

If you aren’t able to use https on your Django site, then you should not set up your ESP’s webhooks.

Use a shared authentication secret

A webhook is an ordinary URL—anyone can post anything to it. To avoid receiving random (or malicious) data in
your webhook, you should use a shared random secret that your ESP can present with webhook data, to prove the post
is coming from your ESP.

72 Chapter 1. Documentation

https://pypi.python.org/pypi/django-templated-mail
https://pypi.python.org/pypi/django-mail-templated
https://pypi.python.org/pypi/django-mail-templated-simple
https://pypi.python.org/pypi/premailer
https://pypi.python.org/pypi/BeautifulSoup
https://pypi.python.org/pypi/lxml
https://pypi.python.org/pypi/html2text
https://letsencrypt.org/

Anymail Documentation, Release 2.1

Most ESPs recommend using HTTP basic authentication as this shared secret. Anymail includes support for this, via
the ANYMAIL_WEBHOOK_SECRET setting. Basic usage is covered in the webhooks configuration docs.

If something posts to your webhooks without the required shared secret as basic auth in the HTTP_AUTHORIZATION
header, Anymail will raise an AnymailWebhookValidationFailure error, which is a subclass of Django’s
SuspiciousOperation. This will result in an HTTP 400 response, without further processing the data or calling
your signal receiver function.

In addition to a single “random:random” string, you can give a list of authentication strings. Anymail will permit
webhook calls that match any of the authentication strings:

ANYMAIL = {
...
'WEBHOOK_SECRET': [

'abcdefghijklmnop:qrstuvwxyz0123456789',
'ZYXWVUTSRQPONMLK:JIHGFEDCBA9876543210',

],
}

This facilitates credential rotation: first, append a new authentication string to the list, and deploy your Django site.
Then, update the webhook URLs at your ESP to use the new authentication. Finally, remove the old (now unused)
authentication string from the list and re-deploy.

Warning: If your webhook URLs don’t use https, this shared authentication secret won’t stay secret, defeating
its purpose.

Signed webhooks

Some ESPs implement webhook signing, which is another method of verifying the webhook data came from your
ESP. Anymail will verify these signatures for ESPs that support them. See the docs for your specific ESP for more
details and configuration that may be required.

Even with signed webhooks, it doesn’t hurt to also use a shared secret.

Additional steps

Webhooks aren’t unique to Anymail or to ESPs. They’re used for many different types of inter-site communication,
and you can find additional recommendations for improving webhook security on the web.

For example, you might consider:

• Tracking event_id, to avoid accidental double-processing of the same events (or replay attacks)

• Checking the webhook’s timestamp is reasonably close the current time

• Configuring your firewall to reject webhook calls that come from somewhere other than your ESP’s documented
IP addresses (if your ESP provides this information)

• Rate-limiting webhook calls in your web server or using something like django-ratelimit

But you should start with using https and a random shared secret via HTTP auth.

1.6.5 Testing your app

Django’s own test runner makes sure your test cases don’t send email, by loading a dummy EmailBackend that accu-
mulates messages in memory rather than sending them. That works just fine with Anymail.

1.6. Tips, tricks, and advanced usage 73

https://docs.djangoproject.com/en/stable/ref/exceptions/#django.core.exceptions.SuspiciousOperation
https://pypi.python.org/pypi/django-ratelimit
https://docs.djangoproject.com/en/stable/topics/testing/tools/#topics-testing-email

Anymail Documentation, Release 2.1

Anymail also includes its own “test” EmailBackend. This is intended primarily for Anymail’s own internal tests, but
you may find it useful for some of your test cases, too:

• Like Django’s locmem EmailBackend, Anymail’s test EmailBackend collects sent messages in django.
core.mail.outbox. Django clears the outbox automatically between test cases. See email testing tools
in the Django docs for more information.

• Unlike the locmem backend, Anymail’s test backend processes the messages as though they would be sent by
a generic ESP. This means every sent EmailMessage will end up with an anymail_status attribute after
sending, and some common problems like malformed addresses may be detected. (But no ESP-specific checks
are run.)

• Anymail’s test backend also adds an anymail_send_params attribute to each EmailMessage as it sends it.
This is a dict of the actual params that would be used to send the message, including both Anymail-specific
attributes from the EmailMessage and options that would come from Anymail settings defaults.

Here’s an example:

from django.core import mail
from django.test import TestCase
from django.test.utils import override_settings

@override_settings(EMAIL_BACKEND='anymail.backends.test.EmailBackend')
class SignupTestCase(TestCase):

Assume our app has a signup view that accepts an email address...
def test_sends_confirmation_email(self):

self.client.post("/account/signup/", {"email": "user@example.com"})

Test that one message was sent:
self.assertEqual(len(mail.outbox), 1)

Verify attributes of the EmailMessage that was sent:
self.assertEqual(mail.outbox[0].to, ["user@example.com"])
self.assertEqual(mail.outbox[0].tags, ["confirmation"]) # an Anymail custom

→˓attr

Or verify the Anymail params, including any merged settings defaults:
self.assertTrue(mail.outbox[0].anymail_send_params["track_clicks"])

1.6.6 Batch send performance

If you are sending batches of hundreds of emails at a time, you can improve performance slightly by reusing a single
HTTP connection to your ESP’s API, rather than creating (and tearing down) a new connection for each message.

Most Anymail EmailBackends automatically reuse their HTTP connections when used with Django’s batch-sending
functions send_mass_mail() or connection.send_messages(). See Sending multiple emails in the
Django docs for more info and an example.

(The exception is when Anymail wraps an ESP’s official Python package, and that package doesn’t support connection
reuse. Django’s batch-sending functions will still work, but will incur the overhead of creating a separate connection
for each message sent. Currently, only SparkPost has this limitation.)

If you need even more performance, you may want to consider your ESP’s batch-sending features. When supported by
your ESP, Anymail can send multiple messages with a single API call. See Batch sending with merge data for details,
and be sure to check the ESP-specific info because batch sending capabilities vary significantly between ESPs.

74 Chapter 1. Documentation

https://docs.djangoproject.com/en/stable/topics/testing/tools/#topics-testing-email
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.send_mass_mail
https://docs.djangoproject.com/en/stable/topics/email/#topics-sending-multiple-emails

Anymail Documentation, Release 2.1

1.7 Troubleshooting

Anymail throwing errors? Not sending what you want? Here are some tips. . .

1.7.1 Figuring out what’s wrong

Check the error message

Look for an Anymail error message in your web browser or console (running Django in dev mode) or
in your server error logs. If you see something like “invalid API key” or “invalid email address”, that’s
probably 90% of what you’ll need to know to solve the problem.

Check your ESPs API logs

Most ESPs offer some sort of API activity log in their dashboards. Check the logs to see if the data you
thought you were sending actually made it to your ESP, and if they recorded any errors there.

Double-check common issues

• Did you add any required settings for your ESP to your settings.py? (E.g., ANYMAIL_SENDGRID_API_KEY
for SendGrid.) See Supported ESPs.

• Did you add 'anymail' to the list of INSTALLED_APPS in settings.py?

• Are you using a valid from address? Django’s default is “webmaster@localhost”, which won’t cut
it. Either specify the from_email explicitly on every message you send through Anymail, or add
DEFAULT_FROM_EMAIL to your settings.py.

Try it without Anymail

Try switching your EMAIL_BACKEND setting to Django’s File backend and then running your email-
sending code again. If that causes errors, you’ll know the issue is somewhere other than Anymail. And
you can look through the EMAIL_FILE_PATH file contents afterward to see if you’re generating the
email you want.

1.7.2 Getting help

If you’ve gone through the suggestions above and still aren’t sure what’s wrong, the Anymail community is happy to
help. Anymail is supported and maintained by the people who use it – like you! (We’re not employees of any ESP.)

For questions or problems with Anymail, you can open a GitHub issue. (And if you’ve found a bug, you’re welcome
to contribute a fix!)

Whenever you open an issue, it’s always helpful to mention which ESP you’re using, include the relevant portions of
your code and settings, the text of any error messages, and any exception stack traces.

1.8 Contributing

Anymail is maintained by its users. Your contributions are encouraged!

The Anymail source code is on GitHub.

1.7. Troubleshooting 75

https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-INSTALLED_APPS
mailto:webmaster@localhost
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-DEFAULT_FROM_EMAIL
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_BACKEND
https://docs.djangoproject.com/en/stable/topics/email/#topic-email-file-backend
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_FILE_PATH
https://github.com/anymail/django-anymail/issues
https://github.com/anymail/django-anymail

Anymail Documentation, Release 2.1

1.8.1 Contributors

See AUTHORS.txt for a list of some of the people who have helped improve Anymail.

Anymail evolved from the Djrill project. Special thanks to the folks from brack3t who developed the original version
of Djrill.

1.8.2 Bugs

You can report problems or request features in Anymail’s GitHub issue tracker. (For a security-related issue that
should not be disclosed publicly, instead email Anymail’s maintainers at security<AT>anymail<DOT>info.)

We also have some Troubleshooting information that may be helpful.

1.8.3 Pull requests

Pull requests are always welcome to fix bugs and improve support for ESP and Django features.

• Please include test cases.

• We try to follow the Django coding style (basically, PEP 8 with longer lines OK).

• By submitting a pull request, you’re agreeing to release your changes under under the same BSD license as the
rest of this project.

• Documentation is appreciated, but not required. (Please don’t let missing or incomplete documentation keep
you from contributing code.)

1.8.4 Testing

Anymail is tested on Travis CI against several combinations of Django and Python versions. Tests are run at least once
a week, to check whether ESP APIs and other dependencies have changed out from under Anymail.

For local development, the recommended test command is tox -e django20-py36,django18-py27,lint,
which tests a representative combination of Python and Django versions. It also runs flake8 and other code-style
checkers. Some other test options are covered below, but using this tox command catches most problems, and is a
good pre-pull-request check.

Most of the included tests verify that Anymail constructs the expected ESP API calls, without actually calling the
ESP’s API or sending any email. So these tests don’t require API keys, but they do require mock and all ESP-specific
package requirements.

To run the tests, you can:

$ python setup.py test # (also installs test dependencies if needed)

Or:

$ pip install mock boto3 sparkpost # install test dependencies
$ python runtests.py

this command can also run just a few test cases, e.g.:
$ python runtests.py tests.test_mailgun_backend tests.test_mailgun_webhooks

Or to test against multiple versions of Python and Django all at once, use tox. You’ll need at least Python 2.7 and
Python 3.6 available. (If your system doesn’t come with those, pyenv is a helpful way to install and manage multiple
Python versions.)

76 Chapter 1. Documentation

https://github.com/anymail/django-anymail/blob/master/AUTHORS.txt
https://github.com/brack3t/Djrill
http://brack3t.com/
https://github.com/anymail/django-anymail/issues
https://docs.djangoproject.com/en/dev/internals/contributing/writing-code/coding-style/
https://www.python.org/dev/peps/pep-0008
https://travis-ci.org/anymail/django-anymail
https://pypi.python.org/pypi/flake8
https://pypi.python.org/pypi/mock
https://pypi.python.org/pypi/tox
https://github.com/pyenv/pyenv

Anymail Documentation, Release 2.1

$ pip install tox # (if you haven't already)
$ tox -e django20-py36,django18-py27,lint # test recommended environments

you can also run just some test cases, e.g.:
$ tox -e django20-py36,django18-py27 tests.test_mailgun_backend tests.test_
→˓utils

to test more Python/Django versions:
$ tox # ALL 20+ envs! (grab a coffee, or use `detox` to run tests in
→˓parallel)
$ tox --skip-missing-interpreters # if some Python versions aren't installed

In addition to the mocked tests, Anymail has integration tests which do call live ESP APIs. These tests are normally
skipped; to run them, set environment variables with the necessary API keys or other settings. For example:

$ export MAILGUN_TEST_API_KEY='your-Mailgun-API-key'
$ export MAILGUN_TEST_DOMAIN='mail.example.com' # sending domain for that
→˓API key
$ tox -e django20-py36 tests.test_mailgun_integration

Check the *_integration_tests.py files in the tests source to see which variables are required for each ESP.
Depending on the supported features, the integration tests for a particular ESP send around 5-15 individual messages.
For ESPs that don’t offer a sandbox, these will be real sends charged to your account (again, see the notes in each test
case). Be sure to specify a particular testenv with tox’s -e option, or tox may repeat the tests for all 20+ supported
combinations of Python and Django, sending hundreds of messages.

1.8.5 Documentation

As noted above, Anymail welcomes pull requests with missing or incomplete documentation. (Code without docs is
better than no contribution at all.) But documentation—even needing edits—is always appreciated, as are pull requests
simply to improve the docs themselves.

Like many Python packages, Anymail’s docs use Sphinx. If you’ve never worked with Sphinx or reStructuredText,
Django’s Writing Documentation can get you started.

It’s easiest to build Anymail’s docs using tox:

$ pip install tox # (if you haven't already)
$ tox -e docs # build the docs using Sphinx

You can run Python’s simple HTTP server to view them:

$ (cd .tox/docs/_html; python3 -m http.server 8123 --bind 127.0.0.1)

. . . and then open http://localhost:8123/ in a browser. Leave the server running, and just re-run the tox command and
refresh your browser as you make changes.

If you’ve edited the main README.rst, you can preview an approximation of what will end up on PyPI at http:
//localhost:8123/readme.html.

Anymail’s Sphinx conf sets up a few enhancements you can use in the docs:

• Loads intersphinx mappings for Python 3, Django (stable), and Requests. Docs can refer
to things like :ref:`django:topics-testing-email` or :class:`django.core.mail.
EmailMessage`.

• Supports much of Django’s added markup, notably :setting: for documenting or referencing Django and
Anymail settings.

1.8. Contributing 77

https://github.com/anymail/django-anymail/blob/master/tests
https://pypi.python.org/pypi/Sphinx
https://docs.djangoproject.com/en/stable/internals/contributing/writing-documentation/
http://localhost:8123/
http://localhost:8123/readme.html
http://localhost:8123/readme.html
http://www.sphinx-doc.org/en/master/ext/intersphinx.html
https://docs.djangoproject.com/en/stable/internals/contributing/writing-documentation/#django-specific-markup

Anymail Documentation, Release 2.1

• Allows linking to Python packages with :pypi:`package-name` (via extlinks).

1.9 Release notes

Complete release notes can be found in the project’s GitHub releases page.

Anymail practices semantic versioning. Among other things, this means that minor updates (1.x to 1.y) should always
be backwards-compatible, and breaking changes will always increment the major version number (1.x to 2.0).

78 Chapter 1. Documentation

http://www.sphinx-doc.org/en/stable/ext/extlinks.html
https://github.com/anymail/django-anymail/releases

Python Module Index

a
anymail.exceptions, 26
anymail.message, 11
anymail.signals, 20

79

Anymail Documentation, Release 2.1

80 Python Module Index

Index

A
ANYMAIL

setting, 7
anymail.exceptions (module), 26
anymail.inbound.AnymailInboundMessage (built-in

class), 29
anymail.message (module), 11
anymail.signals (module), 20
anymail.signals.AnymailInboundEvent (built-in class),

28
anymail.signals.post_send (built-in variable), 26
anymail.signals.pre_send (built-in variable), 25
ANYMAIL_AMAZON_SES_AUTO_CONFIRM_SNS_SUBSCRIPTIONS

setting, 40
ANYMAIL_AMAZON_SES_CLIENT_PARAMS

setting, 39
ANYMAIL_AMAZON_SES_CONFIGURATION_SET_NAME

setting, 40
ANYMAIL_AMAZON_SES_MESSAGE_TAG_NAME

setting, 40
ANYMAIL_AMAZON_SES_SESSION_PARAMS

setting, 40
ANYMAIL_IGNORE_RECIPIENT_STATUS

setting, 7
ANYMAIL_IGNORE_UNSUPPORTED_FEATURES

setting, 10
ANYMAIL_MAILGUN_API_KEY

setting, 42
ANYMAIL_MAILGUN_API_URL

setting, 42
ANYMAIL_MAILGUN_SENDER_DOMAIN

setting, 42
ANYMAIL_MAILJET_API_KEY

setting, 45
ANYMAIL_MAILJET_API_URL

setting, 45
ANYMAIL_MANDRILL_API_KEY

setting, 48
ANYMAIL_MANDRILL_API_URL

setting, 49
ANYMAIL_MANDRILL_WEBHOOK_KEY

setting, 49
ANYMAIL_MANDRILL_WEBHOOK_URL

setting, 49
ANYMAIL_POSTMARK_API_URL

setting, 54
ANYMAIL_POSTMARK_SERVER_TOKEN

setting, 54
ANYMAIL_REQUESTS_TIMEOUT

setting, 8
ANYMAIL_SEND_DEFAULTS

setting, 16
ANYMAIL_SENDGRID_API_KEY

setting, 56
ANYMAIL_SENDGRID_API_URL

setting, 57
ANYMAIL_SENDGRID_GENERATE_MESSAGE_ID

setting, 57
ANYMAIL_SENDGRID_MERGE_FIELD_FORMAT

setting, 57
ANYMAIL_SENDGRID_PASSWORD

setting, 61
ANYMAIL_SENDGRID_USERNAME

setting, 61
ANYMAIL_SENDINBLUE_API_KEY

setting, 63
ANYMAIL_SENDINBLUE_API_URL

setting, 63
ANYMAIL_SPARKPOST_API_KEY

setting, 66
ANYMAIL_SPARKPOST_API_URL

setting, 66
anymail_status (anymail.message.AnymailMessage at-

tribute), 13
ANYMAIL_WEBHOOK_SECRET

setting, 72
AnymailAPIError, 27
AnymailInboundMessage (built-in class), 31
AnymailInvalidAddress, 27

81

Anymail Documentation, Release 2.1

AnymailMessage (class in anymail.message), 11
AnymailMessageMixin (class in anymail.message), 17
AnymailRecipientsRefused, 26
AnymailSerializationError, 27
AnymailStatus (class in anymail.message), 14
AnymailTrackingEvent (class in anymail.signals), 21
AnymailUnsupportedFeature, 26
as_uploaded_file() (AnymailInboundMessage method),

31
attach_inline_image() (any-

mail.message.AnymailMessage method),
13

attach_inline_image() (in module anymail.message), 16
attach_inline_image_file() (any-

mail.message.AnymailMessage method),
13

attach_inline_image_file() (in module anymail.message),
15

attachments (anymail.inbound.AnymailInboundMessage
attribute), 30

C
cc (anymail.inbound.AnymailInboundMessage attribute),

30
click_url (anymail.signals.AnymailTrackingEvent at-

tribute), 23

D
date (anymail.inbound.AnymailInboundMessage at-

tribute), 30
description (anymail.signals.AnymailTrackingEvent at-

tribute), 23

E
envelope_recipient (any-

mail.inbound.AnymailInboundMessage at-
tribute), 29

envelope_sender (anymail.inbound.AnymailInboundMessage
attribute), 29

envelope_sender (anymail.message.AnymailMessage at-
tribute), 12

esp_event (anymail.signals.AnymailInboundEvent
attribute), 29

esp_event (anymail.signals.AnymailTrackingEvent at-
tribute), 23

esp_extra (anymail.message.AnymailMessage attribute),
13

esp_response (anymail.message.AnymailStatus attribute),
15

event_id (anymail.signals.AnymailInboundEvent at-
tribute), 28

event_id (anymail.signals.AnymailTrackingEvent at-
tribute), 22

event_type (anymail.signals.AnymailInboundEvent at-
tribute), 28

event_type (anymail.signals.AnymailTrackingEvent at-
tribute), 21

F
from_email (anymail.inbound.AnymailInboundMessage

attribute), 29

G
get_content_bytes() (AnymailInboundMessage method),

32
get_content_disposition() (AnymailInboundMessage

method), 31
get_content_maintype() (AnymailInboundMessage

method), 31
get_content_subtype() (AnymailInboundMessage

method), 31
get_content_text() (AnymailInboundMessage method),

32
get_content_type() (AnymailInboundMessage method),

31
get_filename() (AnymailInboundMessage method), 31

H
html (anymail.inbound.AnymailInboundMessage at-

tribute), 30

I
inline_attachments (any-

mail.inbound.AnymailInboundMessage at-
tribute), 30

is_attachment() (AnymailInboundMessage method), 31
is_inline_attachment() (AnymailInboundMessage

method), 31

M
merge_data (anymail.message.AnymailMessage at-

tribute), 19
merge_global_data (anymail.message.AnymailMessage

attribute), 19
message (anymail.signals.AnymailInboundEvent at-

tribute), 28
message_id (anymail.message.AnymailStatus attribute),

14
message_id (anymail.signals.AnymailTrackingEvent at-

tribute), 22
metadata (anymail.message.AnymailMessage attribute),

12
metadata (anymail.signals.AnymailTrackingEvent at-

tribute), 22
mta_response (anymail.signals.AnymailTrackingEvent

attribute), 23

82 Index

Anymail Documentation, Release 2.1

P
Python Enhancement Proposals

PEP 8, 76

R
recipient (anymail.signals.AnymailTrackingEvent at-

tribute), 22
recipients (anymail.message.AnymailStatus attribute), 15
reject_reason (anymail.signals.AnymailTrackingEvent at-

tribute), 22
RFC

RFC 2822, 14
RFC 5322, 27

S
send_at (anymail.message.AnymailMessage attribute), 13
setting

ANYMAIL, 7
ANYMAIL_AMAZON_SES_AUTO_CONFIRM_SNS_SUBSCRIPTIONS,

40
ANYMAIL_AMAZON_SES_CLIENT_PARAMS,

39
ANYMAIL_AMAZON_SES_CONFIGURATION_SET_NAME,

40
ANYMAIL_AMAZON_SES_MESSAGE_TAG_NAME,

40
ANYMAIL_AMAZON_SES_SESSION_PARAMS,

40
ANYMAIL_IGNORE_RECIPIENT_STATUS, 7
ANYMAIL_IGNORE_UNSUPPORTED_FEATURES,

10
ANYMAIL_MAILGUN_API_KEY, 42
ANYMAIL_MAILGUN_API_URL, 42
ANYMAIL_MAILGUN_SENDER_DOMAIN, 42
ANYMAIL_MAILJET_API_KEY, 45
ANYMAIL_MAILJET_API_URL, 45
ANYMAIL_MANDRILL_API_KEY, 48
ANYMAIL_MANDRILL_API_URL, 49
ANYMAIL_MANDRILL_WEBHOOK_KEY, 49
ANYMAIL_MANDRILL_WEBHOOK_URL, 49
ANYMAIL_POSTMARK_API_URL, 54
ANYMAIL_POSTMARK_SERVER_TOKEN, 54
ANYMAIL_REQUESTS_TIMEOUT, 8
ANYMAIL_SEND_DEFAULTS, 16
ANYMAIL_SENDGRID_API_KEY, 56
ANYMAIL_SENDGRID_API_URL, 57
ANYMAIL_SENDGRID_GENERATE_MESSAGE_ID,

57
ANYMAIL_SENDGRID_MERGE_FIELD_FORMAT,

57
ANYMAIL_SENDGRID_PASSWORD, 61
ANYMAIL_SENDGRID_USERNAME, 61
ANYMAIL_SENDINBLUE_API_KEY, 63
ANYMAIL_SENDINBLUE_API_URL, 63

ANYMAIL_SPARKPOST_API_KEY, 66
ANYMAIL_SPARKPOST_API_URL, 66
ANYMAIL_WEBHOOK_SECRET, 72

spam_detected (anymail.inbound.AnymailInboundMessage
attribute), 30

spam_score (anymail.inbound.AnymailInboundMessage
attribute), 30

status (anymail.message.AnymailStatus attribute), 14
stripped_html (anymail.inbound.AnymailInboundMessage

attribute), 30
stripped_text (anymail.inbound.AnymailInboundMessage

attribute), 30
subject (anymail.inbound.AnymailInboundMessage at-

tribute), 30

T
tags (anymail.message.AnymailMessage attribute), 12
tags (anymail.signals.AnymailTrackingEvent attribute),

22
template_id (anymail.message.AnymailMessage at-

tribute), 18
text (anymail.inbound.AnymailInboundMessage at-

tribute), 30
timestamp (anymail.signals.AnymailInboundEvent

attribute), 28
timestamp (anymail.signals.AnymailTrackingEvent at-

tribute), 22
to (anymail.inbound.AnymailInboundMessage attribute),

29
track_clicks (anymail.message.AnymailMessage at-

tribute), 12
track_opens (anymail.message.AnymailMessage at-

tribute), 12

U
user_agent (anymail.signals.AnymailTrackingEvent at-

tribute), 23

Index 83

	Documentation
	Anymail 1-2-3
	Installation and configuration
	Sending email
	Receiving mail
	Supported ESPs
	Tips, tricks, and advanced usage
	Troubleshooting
	Contributing
	Release notes

	Python Module Index

